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Introduction



Butterfly effect

Deterministic finite-dimensional chaos:
log(1/Ax)

)\max

T

T" is the separation time;
Ax s the initial observation error;

Amax is the Lyapunov exponent

Continuous dependence on initial conditions:

T — 00 as Ax — 0

Lorenz (1969): T — Ty < oo as Ax — 0

It is proposed that certain formally deterministic fluid systems which possess many
scales of motion are observationally indistinguishable from indeterministic systems:
specifically, that two states of the system differing initially by a small ‘‘observational
error’ will evolve into two states differing as greatly as randomly chosen states of the
system within a finite time interval, which cannot be lengthened by reducing the
amplitude of the initial error.

(further developments for turbulent flows: Leith&Kraichnan 1972, Ruelle 1979, Eyink 1996 etc.)



Non-uniqueness and singularities

Eddy time-scale vs. wavenumber in Kolmogorov turbulence:
E(k) ~ k=373 t(k) ~ k=23

Total time for error evolution from small to large scales:

T(2Nkp) + -+ 7(2k) + 7(kr) —— ¢ 272N/3 < o
N=0

N — oo

Non-unique solutions of non-Lipschitz
differential equations

0.5

= /3 (Kolmogorov-type singularity) 04l

Solutions starting at the singularity: 031

S

0.2}

0 t < ts; 0.1}
N /2
(2(t3t5)) ) t> ts; 0




Lagrangian spontaneous stochasticity

Richardson experiments (20s) with separation of balloons:

p(t)* ~ At®

(not exponential as in deterministic chaos)

time

Particle diffusion (Brownian motion):

dR=v(R,1)dt+\2xd B(t) k—0

space

with deterministic rough (non-Lipschitz) velocity. Falkovich, Gawedzki, Vergassola 2001

Solution remains diffusive in non-diffusive limit
(spontaneous stochasticity in Lagrangian formulation).



Back to a full flow system
(velocity is a dynamical variable):

What is the origin of singularities in velocity field (for large Re limit)?

If trajectories are stochastic, why velocities are deterministic?



Burgers equation



Dynamical system view of blowup in inviscid Burgers equation

2
Qu , Of Ou rteR, v = 0t f=u?/2.

[N _:V—

Ot + ox ox?’

velocity

\ t-axis

Implicit solution: u=ug(xrg), x=x0+ (t—to)u

Blowup (generic solution, simplified by symmetries): = ut —u’ + o(u®)

Renormalized (logarithmic) coordinates:
1

t=—e", x=¢% u=-—ve ¢ (b)
: S : ov 5,  Ov
Renormalized inviscid equation: 5. = vtvi- Uﬁ_ﬁ 2 —
T
e ¢ =wve ¢ +vPe’ 0
-10 -5 0
v f
stable steady-state

Renormalized solution: v = F({ —ar )7 a=3/2,
traveling wave

1 =F 4+ e 2n1p3




Dynamics after blowup

Renormalized (logarithmic) coordinates:

Renormalized inviscid equation:

ow 5 ow
— =W+ w —wr

ot o0&

Renormalized solution:

w=GE+at), a=3/2, 1=-G+e "G

“reflected” steady-state traveling wave
moving in opposite direction

Blowup: before and after
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internal “clock” of blowup

T=—log(t, —t) OO

‘ 127 II)?ZI&LIMMIIIM:}:IM-W/.'W -

—oo  t=log(t —1t)



What happens if the traveling waves in renormalized
system become unstable?

One can expect periodic, quasi-periodic or chaotic waves



Models



Nonlinearity and nonlocality

Incompressible Navier-Stokes equations: NS equations resolved w.r.t. pressure:

Oivi +vj0jv; = —0;p + vOj;vi, 010 + (8¢ — iV 2) 8; (vjve) = vV,

('3,-0,- 0.

|

(nonlocal quadratic nonlinearity)

1D models that mimic a nonlocal quadratic nonlinearity:

0 0 92
u+—g=v—u+f, x,t € R,

9t ox 0x2

gx,t) = L f f K(y—x,z—x)u(y, t)u(z, t)dydz
27

Extra conditions on the kernel function K(y,z):
energy conservation, Hamiltonian structure. etc.

Example: Constantin—-Lax—Majda equation w; — Vyw = 0, v, = Hw



Special cases: Desnyansky-Novikov shell model

Koo b 4 4
PEE TR0 T =207 (z—2y)

Solution representation

k, = koA, A=2% nelZ, 1<k<A.
u,(t) = k20 (K23,t), a(k,t) = [u(z, t)e *dz

Desnyansky-Novikov shell model equations

ou,
ot

2
— knun_l — Kp+lUpUpyl — VpUy + fn, n ez

Shell speed Un
Wavenumbers &, = ko)"

Viscosity v, = vk2




Special cases: Sabra shell models

K(y,2) = Ky(y,2)+Ky(z,y), Ky(y,2)= o _(1"'0)02_ co
S vl e C(oy—2?% (0%y—2? (oy+2)?

Sabra model equations

ou,
ot

=1 [kn+1un+2u;+1 — (1 + C)knun+1u:_1 — Ckn—lun—lun—Z] — VplUp + fn

A=0"=1/2+5~2.058

Gledzer-Ohkitani-Yamada (GOY) in 70-80th;
L'vov, Podivilov, Pomyalov, Procaccia, Vandembroucq (Sabra) in 90th

Inviscid invariants: energy, helicity, enstrophy etc. (depending on coefficients)



Dynamics in the inviscid Desnyansky-Novikov shell model:
blowup to a shock wave

Solution blows up in finite time leading to an asymptotic stationary state
with Kolmogorov scaling (for the inviscid limit)

up = k'3

Dynamics in shell variables Dynamics in continuous representation Stationary state: a shock

— f(x)

—(X) ||




Before blowup



Blowup in Sabra model

duy, . ) 1 . 1
% - Nn[u] - Vk?zuna n = 17 27 37 cee Nn[U] =1 <kn+1un+2un—|—l o §knun+1un—l + §kn—1un—1un—2>
Renormalized system (Dombre&Gilson, 98)
dv R P 1 1 A2
d—: = P, [U] —Av,, n=1,23,.... A= %, P,v] = —F'Un+2v:l+1 + §vn+1v;’1,1 + 5 Un-1Un-2-
Uy = —iels AT =Ly / e I3 A" gt
0
1 (a) s ®)
Steady-state traveling wave: 08 |04
i0 __ o8y
V(1) =€V (n — ar) <
04}
Self-similar blowup:
0.2
Un(t) = =i k2 U (K2 (L — 1)), t<ty, .
0 1 2 3 4 5




Periodic, quasi-periodic and chaotic blowup

t=t A

T = — log(tb — t) .9
@
Examples:

periodic, quasi-periodic and chaotic blowup in natural convection shell models (AM 2013);
chaotic blowup in helical shell models (de Pietro, Biferale, AM);
chaotic blowup in MHD shell models (Goedert, AM);

renormalized time physical time 1

0.015 < 0

0.01p

0.005

Chaotic blowup
in convection model:
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Real-world examples?

Coalescence cascade

Is there evidence for a chaotic blowup
in a real physical system?

Journal of Statistical Physics, Vol. 38, Nos. 1/2, 1985
On the Stochasticity in Relativistic Cosmology

I. M. Khalatnikov,' E. M. Lifshitz,” K. M. Khanin,'
L. N. Shechur,! and Ya. G. Sinai’



After blowup:
non-unigueness and
spontaneous stochasticity



Blowup state

In Sabra model:

up(ty) = —ik?™', 2 ~ 0.6975.

Continuous representation

un(t) = k)20 (K22 t) ko = ko™,

u(x,ty) = F(17T_ b) COS (%) |2|?sgn x

B=2—32/2 ~ 0.954

a(k,t) =

057

-0.5

[ u(z,t)e " dx

(€)




Non-stationary wave in renormalized system:
unstable shock wave solution

‘ﬁ

t =1t \

7 (\

2 22 2.4 2.6

t

—7/n y=2"40HN) 0
N —o0

Non-unique solutions!
However, a unique solution can be chosen for a given (small) viscosity (AM 2016)



Chaotic wave in renormalized system: spontaneous stochasticity

‘ﬁ

t =1t \
@ s )

—o00 T=log(t—tp)

Dynamics in renormalized time:

w T=-00

q *{@ /IR AR
Y AVARE:

Implications:

* physically relevant solution is a (spontaneous!) probability distribution
* unique probabilistic description in inviscid limit
in the form of a steady-state traveling stochastic wave



Chaotic wave after blowup in Sabra model

Renormalized system:

dw,, 1 . 1 i A2
= w, WyyoWy g + =Wp W, 1 + —Wy_1Wy—2 | log A.

dt DY 2 2

t =t + >\T’ U, = —Z'k}:l)\_T’wn _ —ik()_lA_T_nwn. /o k;l — ]{70—1>\—n

chaotic dynamics stochastic wave formation
@
. . ()

at = —22
ar = —17
at = —12

| | — g7 = —7

0 10 20 30

0 1I0 2IO 3IO
v =10"1

small-scale noise:



Probabillity distribution as a steady-state traveling wave

fopr (W) = po(Tw), To = 1/a

T : (wl,wg,. . ) — (’UJQ,’UJ?,,. . )

(a) (b) (©)

log [wio|
10g \’w15|
log ]w20|

A ./
) s R nd
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T T T

Deterministic blowup state:

Wy, = thp N Uy — k2T = EENTD o =1/2, T— —o0

Wave speed: a=1/z~1.4337



Traveling probability measure with constant limiting states

Kolmogorov hypothesis on universality of velocity increments
(Kolmogorov 62; Benzi, Biferale & Parisi 93; Eyink 2003):

Wn = |un/tn_1|, A, =arg(t,_suu,_1u))
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stable traveling wave: universal route to spontaneous stochasticity



Stochastic constant state describes
the equilibrium turbulent statistics

PDF

0.5

PDFs at stochastic constant state of the traveling wave
vs. PDFs of turbulent dynamics in inertial interval for the statistical equilibrium



Summary

Inviscid Burgers equation
(compressible gas dynamics)

du Of

—+—=v—, z,teR, v = 0" f:u2/2.

Ot + ox ox?’

A notion of weak solution, entropy condition,
extended functional spaces, etc.

Nonlocal flux term
(“incompressible” flow?)

flx,t) = % / / K(y—x,z—x)u(y, t)u(z, t)dydz

Stochastic solutions, renormalization,

viscous regularization with infinitesimal noise, etc.

M

t-axis

velocity

t-axis

X—axis

Spontaneously stochastic process as a unique solution of deterministic flow equations



Spontaneously stochastic solutions:
general discussion

Lagrangian vs. Eulerian stochasticity

How to understand / define the inviscid (large Re) limit?

Regularization must contain an infinitesimal random term, e.g.,
a small-scale noise or random components in physical parameters.

Non-unique deterministic vs. unique stochastic solutions

The limiting (large Reynolds number) stochastic solution may be expected
to be unique and independent of regularization.

0.025

Thus, spontaneous stochasticity is a property
of inviscid deterministic flow equations.

0.02

_0.015

+~

Observation is a random (non-unique) a
realization of a unique probability measure.

0.01

0.005

Nonlinearity 29 (2016) 2238-2252 03 025 02 015 -01 005 0 005
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