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Butterfly effect
Deterministic finite-dimensional chaos:

is the separation time; 

Continuous dependence on initial conditions:
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Lorenz (1969):

(further developments for turbulent flows: Leith&Kraichnan 1972, Ruelle 1979, Eyink 1996 etc.)
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is the initial observation error;
is the Lyapunov exponent
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FIG. 2. (a) Mean values and (b) standard deviations for real parts of the large-scale shell speeds

u1, u2 and u3 as functions of time. The speeds become stochastic after the blowup at t = 0.42.

Solid black curves correspond to Re = 1010, and dashed red curves to Re = 107.

In order to see how this is possible, let us consider a simple ordinary di↵erential equation

ṙ = r1/3, (7)

which mimics a particle position r at time t with the initial condition r(0) = 0. Here the

velocity v = r1/3 is chosen such that it satisfies the Kolmogorov scaling. There is a family

of solutions

r(t) =

8
><

>:

0 t  t
s

;

⇣
2(t�ts)

3

⌘3/2

, t > t
s

;
(8)

where t
s

is an arbitrary parameter denoting a spontaneous time, when the particle starts

moving, see Fig. 3. This example shows the non-uniqueness of the trajectories, inherent in

Kolmogorov scaling laws. For Eq. (7), this non-uniqueness is the well-known fact in dif-

ferential equations, because the right-hand side if not Lipschitz continuous. For turbulent

flows, these ideas appeared and were further elaborated for fluid particle trajectories assum-

ing given (fixed or stochastic) rough velocity fields, see e.g. [7–10]. As one can see from

Eq. (8), a separation between two solutions with close initial conditions grows as power-law,

not exponentially. Moreover, if one of the initial conditions is at the origin, di↵erent sepa-

rations can be achieved at a given time t by choosing di↵erent parameters t
s

. This shows

how the stochasticity emerges instantaneously due to the non-uniqueness, as opposed to
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FIG. 3. Non-unique solutions of Eq. (7) with the initial condition r(0) = 0 (solid lines) span a

gray region, which grows as a power-law with time. The dashed line shows a solution with a small

non-zero initial condition.

the exponential path separation in the deterministic chaos. Note also that the spontaneous

stochasticity does not require the system to be chaotic, as follows from the above example

and can be observed in the Gledzer shell model of turbulence [22].

Both in Eq. (7) and in the theory describing non-unique particle trajectories [7–10], a

singularity is introduced explicitly in the governing equations. A more sophisticated process

drives the stochastic anomaly as described in Section IV. Here, equations (6) do not feature

any singularity in the right-hand side. Instead, a singularity leading to the non-uniqueness

appears in the solution itself at the finite-time blowup.

Though the unpredictability of spontaneously stochastic turbulent flow is qualitatively

di↵erent from the unpredictability in deterministic chaos, both lead to similar practical

conclusions on essential limitations for finite-time predictions. The stochastic anomaly,

however, comes along with a solution to this problem: it suggests that the regular probability

distribution exists in the limit Re ! 1. In this sense, the spontaneous stochasticity is

a property already inherent in the inviscid flow equations, i.e., inviscid Sabra model or

incompressible Euler equations. This makes the limiting probability distribution a true

physical solution of a “deterministic” inviscid problem that can be computed as a function

of time and, thus, accurately predicted. In the following sections we suggest how this can

be done in the framework of the Sabra shell model.
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Non-uniqueness and singularities
Eddy time-scale vs. wavenumber in Kolmogorov turbulence:

Nonlinearity 27 (2014) R123 Invited Article

characterizes the time it takes for errors at wavenumber k to grow and infect nonlinearly the
accuracy of simulations at the larger scale k/2.

Now suppose we are only interested in predicting large-scale aspects of the flow (in
Lorenz’s terminology, the cyclonic weather pattern, but not the detailed cloud structures
embedded within the cyclone). Let kL denote a characteristic wavenumber of these large-
scale weather patterns. It can then be asked how long, !P , it will take before initial errors at
large wavenumbers 2NkL, N ≫ 1, will affect large-scale simulations of the flow. A plausible
estimate of this is given by [17]

!P (N) = τ (2NkL) + τ (2N−1kL) + τ (2N−2kL) + . . . τ (20kL) =
N∑

n=0

τ (2nkL). (2.3)

Now the kinetic energy E(k) of nonlinear multi-scale systems often exhibits power-law
structure [21]. For rapidly rotating almost two-dimensional fluid systems forced at large-
scale, e.g. as described by the quasi-geostrophic equations, E(k) ∼ k−3 implying that τ (k) is
actually independent of k. In such systems, !P (N) diverges as N → ∞. This is consistent
with continuous dependence on initial conditions: providing the initial error is at a sufficiently
small scale and hence is sufficiently small in amplitude, it can take an arbitrarily long time
before the initial error infects scales greater than the minimum scale of interest kL.

On the other hand, for a fully three-dimensional fluid system, then E(k) ∼ k−5/3 consistent
with the famous Kolmogorov scaling. For such a system τ (k) ∼ k−2/3 and !P (N) is
convergent (to about 2.7τ (kL)) as N → ∞. This is precisely the situation described more
qualitatively in Lorenz’s AAAS paper—the paper which spawned the phrase ‘the butterfly
effect’. In particular, if the weather scale of interest is equal to 1000 km and an inherent
predictability time τ (kL) ∼ 3 days, then a cloud scale with a length scale of 1 km will have a
inherent predicability time∼3/4 h. Going further, the same scaling estimate implies a sub-cloud
eddy with scale 1 m would have an inherent predictability time of less than a minute. Hence,
according to this scaling argument, if we invested in an observing system which measured
the initial state perfectly down to scales of 1 m, we would add less than half a minute to the
predictability time of the weather scale of interest, compared with an observing system with
resolution 1 km.

Figure 1, from [19], illustrates this graphically. To produce this result, Lorenz considers
the two-dimensional vorticity equation

ζt + J (ψ, ζ ) = 0 ∇2ψ = ζ, (2.4)

which is linearized about a reference solution. An equation for the evolution of error variance is
then derived with expectations over ensembles of errors and over reference states. Assumptions
of isotropy and homogeneity are made, implying that solutions depend only on k. Also,
fourth order moments, which arise as products of quadratic functions of the reference solution
multiplied by quadratic functions of the error terms, are assumed to be factorizable as products
of expectations of quadratics. The reader is referred to [19] for details of the derivation of this
quasi-empirical equation. However, the key equation for error growth which results from this
analysis is given by

d2Zk

dt2
=

n∑

l=1

CklZl, (2.5)

where Zk is the ensemble-mean of the kinetic energy of the error fields as a function of
wavenumber k, and Ckl is a (highly asymmetric) array of spectral interaction coefficients.
Nonlinearity is represented in the model by simply cutting off the growth of error when it
reaches saturation, i.e. the value of the background kinetic energy. This sudden imposition of
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Solutions starting at the singularity:



with the order is then due to the dependence of the
integrals of motion on the number of particles. The ex-
istence of statistical conservation laws signals that the
Lagrangian dynamics keeps trace of the particle initial
configuration throughout the evolution. This memory is
what makes the correlation functions at any small scale
sensitive to the presence of a finite injection length L .
We believe that, more generally, the notion of statistical
integrals of motion is a key to understand the universal
part of the steady-state statistics for systems far from
equilibrium.

The aim of this review is a description of fluid turbu-
lence from the Lagrangian viewpoint. Classical literature
on Lagrangian dynamics mostly concentrated on turbu-
lent diffusion and pair dispersion, i.e., the distance trav-
eled by one particle or the separation between two par-
ticles as a function of time. By contrast, in that general
picture that has emerged recently, the evolution of the
multiparticle-configuration geometry takes center stage.
The main body of the review will present these novel
aspects of Lagrangian dynamics and their consequences
for the advected fields. We shall adhere to the following
plan. The knowledge accumulated on one- and two-
particle dynamics has been extensively covered in litera-
ture (Pope, 1994; Majda and Kramer, 1999). The objec-
tive of the first three parts of Sec. II is to point out a few
fundamental issues, with particular attention to the basic
differences between the cases of spatially smooth and
nonsmooth velocity fields. We then proceed to the mul-
tiparticle statistics and the analysis of hidden statistical
conservation laws that cause the breakdown of scale in-
variance. Most of this analysis is carried out under the
assumption of a prescribed statistics of the velocity field.
In Sec. III we shall analyze passive scalar and vector
fields transported by turbulent flow and what can be in-
ferred about their statistics from the motion of fluid par-
ticles. In Sec. IV, we briefly discuss the Lagrangian dy-
namics in the Burgers and the Navier-Stokes equations.
The statistics of the advecting velocity is not prescribed
anymore, but it results from nonlinear dynamics. Con-
clusions focus on the impact of the results presented in
this review on major directions of future research. Read-
ers from other fields of physics interested mainly in the
breakdown of scale invariance and statistical conserva-
tion laws may restrict themselves to Secs. II.C, II.E,
III.C, and V.

II. PARTICLES IN FLUID TURBULENCE

As explained in the Introduction, understanding the
properties of transported fields involves the analysis of
the behavior of fluid particles. We have therefore de-
cided to first present results on the time-dependent sta-
tistics of the Lagrangian trajectories Rn(t) and to devote
the subsequent Sec. III to the description of transported
fields. In the present section we sequentially increase the
number of particles involved in the problem. We start
from a single trajectory whose effective motion is a
simple diffusion at times longer than the velocity corre-
lation time in the Lagrangian frame (Sec. II.A). We then

move to two particles. The separation law of two close
trajectories depends on the scaling properties of the ve-
locity field v(r,t). If the velocity is smooth, that is
!v(Rn)!v(Rm)!!!Rn!Rm!, then the initial separation
grows exponentially in time (Sec. II.B). The smooth case
can be analyzed in much detail using the large deviation
arguments presented in Sec. II.B.1. The reader mainly
interested in applications to transported fields might
wish to take the final results (21) and (27) for granted,
skipping their derivation and the analysis of the few
solvable cases where the large deviations may be calcu-
lated exactly. If the velocity is nonsmooth, that is,
!v(Rn)!v(Rm)!!!Rn!Rm!" with ""1, then the separa-
tion distance between two trajectories grows as a power
of time (Sec. II.C), as first observed by Richardson
(1926). We discuss important implications of such a be-
havior on the nature of the Lagrangian dynamics. The
difference between the incompressible flows, where the
trajectories generally separate, and compressible ones,
where they may cluster, is discussed in Sec. II.D. Finally,
in the consideration of three or more trajectories, the
new issue of geometry appears. Statistical conservation
laws come to light in two-particle problem and then fea-
ture prominently in the consideration of multiparticle
configurations. Geometry and statistical conservation
laws are the main subject of Sec. II.E. Although we try
to keep the discussion as general as possible, much of
the insight into the trajectory dynamics is obtained by
studying simple random ensembles of synthetic veloci-
ties where exact calculations are possible. The latter
serve to illustrate the general features of the particle
dynamics.

A. Single-particle diffusion

The Lagrangian trajectory R(t) of a fluid particle
advected by a prescribed incompressible velocity field
v(r,t) in d space dimensions and undergoing molecular
diffusion with diffusivity # is governed by the stochastic
equation (Taylor, 1921), customarily written for
differentials:

dR#v$R,t %dt$!2#d!$ t %. (5)

Here, !(t) is the d-dimensional standard Brownian mo-
tion with zero average and covariance function
&' i(t)' j(t!)(#) ij min(t,t!). The solution of Eq. (5) is
fixed by prescribing the particle position at a fixed time,
e.g., the initial position R(0).

The simplest instance of Eq. (5) is the Brownian mo-
tion, where the advection is absent. The probability den-
sity P(*R;t) of the displacement *R(t)#R(t)!R(0)
satisfies the heat equation (+ t!#“2)P#0 whose
solution is the Gaussian distribution P(*R;t)
#(4,#t)!d/2 exp-!(*R)2/(4#t). . The other limiting
case is pure advection without noise. The properties of
the displacement depend then on the specific trajectory
under consideration. We shall always work in the frame
of reference with no mean flow. We assume statistical
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viscous range with the power-law growth (39) in the in-
ertial range. In the viscous regime the closer two trajec-
tories are initially, the longer time is needed to reach a
given separation. As a result, infinitesimally close trajec-
tories never separate and trajectories in a fixed realiza-
tion of the velocity field are continuously labeled by the
initial conditions. Small deviations of the initial point are
magnified exponentially, though. This sensitive depen-
dence is usually considered as the defining feature of the
chaotic behavior. Conversely, in the inertial interval the
trajectories separate in a finite time independently of
their initial distance R(0), provided the latter was also
in the inertial interval. The speed of this separation may
depend on the detailed structure of the turbulent veloci-
ties, including their fine geometry (Fung and Vassilicos,
1998), but the very fact of the explosive separation is
related to the scaling behavior !rv"r# with #!1. For
high Reynolds numbers the viscous scale $ is negligibly
small, a fraction of a millimeter in the turbulent atmo-
sphere. Setting it to zero (or equivalently the Reynolds
number to infinity) is an appropriate abstraction if we
want to concentrate on the behavior of the trajectories
in the inertial range. In such a limit, the power-law sepa-
ration between the trajectories extends down to arbi-
trarily small distances: infinitesimally close trajectories
still separate in a finite time. This makes a marked dif-
ference in comparison to the smooth chaotic regime,
clearly showing that developed turbulence and chaos are
fundamentally different phenomena. As stressed in Ber-
nard et al. (1998), the explosive separation of the trajec-
tories results in a breakdown of the deterministic La-
grangian flow in the limit Re→%, see also Frisch et al.
(1998) and Gawȩdzki (1998, 1999). The effect is dra-
matic since the trajectories cannot be labeled anymore
by the initial conditions. Note that the sheer existence of
the Lagrangian trajectories R(t ;r) depending continu-
ously on the initial position r would imply that
lim

r1→r2
&!R(t ;r1)"R(t ;r2)!'(#0. That would contradict

the persistence of a power-law separation of the Rich-
ardson type for infinitesimally close trajectories. Remark
also that the breakdown of the deterministic Lagrangian
flow does not violate the theorem about the uniqueness
of solutions of the ordinary differential equation Ṙ
#v(R,t). Indeed, the theorem requires the velocity to
be Lipschitz in r, i.e., that !rv)O(r). As first noticed by
Onsager (1949), the velocities for Re#% are actually
only Hölder continuous: !rv"O(r#) with the exponent
#!1 (in Kolmogorov’s phenomenology ##1/3). The
simple equation ẋ#!x!# provides a classical example
with two solutions x#*(1"#)t+1/(1"#) and x#0, both
starting from zero, for the non-Lipschitz case #!1. It is
then natural to expect the existence of multiple La-
grangian trajectories starting or ending at the same
point. Such a possibility was first noticed and exploited
in a somewhat different context in the study of weak
solutions of the Euler equations (Brenier, 1989; Shnirel-
man, 1999). Does then the Lagrangian description of the
fluid break down completely at Re#%?

Even though the deterministic Lagrangian description
is inapplicable, the statistical description of the trajecto-
ries is still possible. As we have seen above, probabilistic
questions like those about the averaged powers of the
distance between initially close trajectories still have
well-defined answers. We expect that for a typical veloc-
ity realization, one may maintain at Re#% a probabilis-
tic description of the Lagrangian trajectories. In particu-
lar, objects such as the PDF p(r,s ;R,t!v) of the time t
particle position R, given its time s position r, should
continue to make sense. For a regular velocity with de-
terministic trajectories,

p,r,s ;R,t!v-#! *R"R, t ;r,s -+ , (43)

where R(t ;r,s) denotes the unique Lagrangian trajec-
tory passing at time s through r. In the presence of a
small molecular diffusion, Eq. (5) for the Lagrangian
trajectories has always a Markov process solution in
each fixed velocity realization, irrespective of whether
the latter be Lipschitz or Hölder continuous (Stroock
and Varadhan, 1979). The resulting Markov process is
characterized by the transition probabilities p(r,s ;R,t!v)
satisfying the advection-diffusion equation3

*. t"“R•v,R,t -"/“R
2 +p,r,s ;R,t!v-#0 (44)

for t$s . The mathematical difference between smooth
and rough velocities is that in the latter case the transi-
tion probabilities are weak rather than strong solutions.
What happens if we turn off the molecular diffusion? If
the velocity is Lipschitz in r, then the Markov process
describing the noisy trajectories concentrates on the de-
terministic Lagrangian trajectories and the transition
probabilities converge to Eq. (43). It has been conjec-
tured in Gawȩdzki (1999) that, for a generic Re#% tur-
bulent flow, the Markov process describing the noisy tra-
jectories still tends to a limit when /→0, but the limit
stays diffused; see Fig. 1. In other words, the transition
probability converges to a weak solution of the advec-
tion equation

*. t"“R•v,R,t -+p,r,s ;R,t!v-#0, (45)

which does not concentrate on a single trajectory, as it
was the case in Eq. (43). We shall then say that the lim-
iting Markov process defines a stochastic Lagrangian
flow. This way the roughness of the velocity would result
in the stochasticity of the particle trajectories persisting
even in the limit /→0. To avoid misunderstanding, let us
stress again that, according to this claim, the Lagrangian
trajectories behave stochastically already in a fixed real-
ization of the velocity field and for negligible molecular
diffusivities, i.e., the effect is not due to the molecular
noise or to random fluctuations of the velocities. This
spontaneous stochasticity of fluid particles seems to con-
stitute an important aspect of developed turbulence. It is
an unescapable consequence of the Richardson disper-

3For /$0 and smooth velocities, the equation results from
the Itô formula generalizing Eq. (A5) applied to Eq. (43) and
averaged over the noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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The surprising observation that Richardson made concerned the relative mo-
tion of two balloons. Richardson found this separation to behave as

ρ(t)2 ∼ At3 (4)

for a wide range of separations from the smallest scale to the scale where the dif-
fusive behavior (3) sets on. Thus the separation grows slower than exponentially
but faster than ballistically. Moreover, the constant A in (4) seems to be indepen-
dent on the initial separation ρ(0), seemingly having a nonzero limit as ρ(0) → 0!
The Richardson law (4) seems quite well confirmed by later experiments as well as
numerical simulations (for references see [2]) although the power 3 might only be
approximately correct in three dimensions. We conclude that the motion of test
particles in a turbulent fluid seems to exhibit properties that are very different
from those observed in smooth dynamical systems. To understand the source of
this discrepancy we need to digress on the properties of turbulent velocity fields.

2 Turbulent velocities

It is an experimental observation that the velocity field of a fluid in the regime
of homogeneous isotropic turbulence exhibits approximate scale invariance on a
wide range of length scales. Such fields are characterized by two length scales,
the dissipative scale η and the injection scale L. For atmospheric flows such as
considered by Richardson η can be of the order of a fraction of a millimeter whereas
L can be of the order of a kilometer. For spatial scales between η and L the
velocity field is approximately self similar: if we consider the difference ∆v(t, ρ) =
v(t, ρ) − v(t, 0) then for η << |ρ|, |ℓρ| << L

∆v(t, ρ) ∼ ℓ−α∆v(t, ℓρ) . (5)

where ∼ means statistically, i.e. as a spatial, temporal or ensemble average and
α ∼ 1

3 . (5) holds only approximately for small moments

< (∆v(t, ρ) · ρ̂)n >∼ Cn|ρ|nα (6)

with significant corrections in the exponent for large n (so called intermittency).
The ratio L

η is proportional to R
3
4 where R is the Reynolds number of the flow (in

atmospheric flows R can easily be of the order 108). Hence η → 0 as R → ∞ and in
that limit the turbulent velocities loose their smoothness and become only Hölder
continuous in their spatial dependence, that is, the difference of the velocity at
two arbitrary nearby points scales as a sublinear power of the distance between
the points. Although R → ∞ is a mathematical limit it should be stressed that
smoothness of the velocity field is not the right assumption for scales larger than
a fraction of a millimeter in atmospheric flows. For such scales the right model is
one of Hölder continuous velocities.

(not exponential as in deterministic chaos)

Lagrangian spontaneous stochasticity

Richardson experiments (20s) with separation of balloons:

Particle diffusion (Brownian motion):

with deterministic rough (non-Lipschitz) velocity.    
Solution remains diffusive in non-diffusive limit 
(spontaneous stochasticity in Lagrangian formulation).



Back to a full flow system  
(velocity is a dynamical variable):

What is the origin of singularities in velocity field (for large Re limit)?

If trajectories are stochastic, why velocities are deterministic?



Burgers equation



stable steady-state 
traveling wave

Implicit solution:

Spontaneously stochastic solutions

in one-dimensional inviscid systems

Alexei A. Mailybaev⇤

Abstract

In this paper, we study the inviscid limit of the Sabra shell model of turbulence, which

is considered as a particular case of a viscous conservation law in one space dimension with

a nonlocal quadratic flux function. We present a theoretical argument (with a detailed

numerical confirmation) showing that a classical deterministic solution before a finite-

time blowup, t < t
b

, must be continued as a stochastic process after the blowup, t > t
b

,

representing a unique physically relevant description in the inviscid limit. This theory is

based on the dynamical system formulation written for the logarithmic time ⌧ = log(t�t
b

),

which features a stable traveling wave solution for the inviscid Burgers equation, but a

stochastic traveling wave for the Sabra model. The latter describes a universal onset of

stochasticity immediately after the blowup.

1 Introduction

In this paper, we study the inviscid limit (⌫ ! 0+) for one-dimensional conservation laws of

the form
@u

@t
+

@f

@x
= ⌫

@2u

@x2
, x, t 2 R, (1.1)

where ⌫ � 0 is the viscosity and the flux function f is quadratic and nonlocal, i.e., f =
RR

K(y � x, z � x)u(y, t)u(z, t)dydz. Such equations can be used as hydrodynamic models of

turbulence, where the nonlocality of f mimics the nonlocality of the pressure term in inviscid

flows [20]. In fact, some of popular shell models of turbulence, which attracted a lot of interest

⇤
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Est. Dona Castorina 110, 22460-320 Rio de

Janeiro, RJ, Brazil. E-mail: alexei@impa.br.
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

due to their non-trivial behavior analogous to the developed hydrodynamic turbulence [6],

are strictly equivalent to Eq. (1.1), see [34]. In particular, this refers to the Sabra model of

turbulence [30] studied in this paper.

When f = u2/2, Eq. (1.1) represents the Burgers equation and its solution is well known.

Inviscid solutions blow up in finite time forming a shock wave. A discontinuous (weak) solu-

tion at larger times is well-defined in the inviscid limit, see e.g. [11]. When the flux function

is nonlocal, a finite-time blowup in the inviscid system can be described using renormaliza-

tion techniques [14, 31]. Our aim in this work is to demonstrate and explain the striking

phenomenon, when a deterministic (classical) inviscid solution before the blowup continues

spontaneously as a stochastic process for times after the blowup.

Understanding of the stochasticity phenomenon proposed in this work is based on a combina-

tion of the two concepts: non-uniqueness and chaos. It is known that Lagrangian trajectories

of a rough deterministic velocity field are non-unique [5, 13, 19, 26, 18]. The origin of this

stochasticity is a violation of the Lipschitz condition, which ensures the uniqueness of solu-

tions for di↵erential equations, see e.g. [2]. In our system, the roughness necessary for such

non-uniqueness is provided by the blowup phenomenon.

It is widely accepted [20] that the developed turbulence is not just a finite-dimensional

chaos phenomenon, due to a large (infinite as ⌫ ! 0+) separation of scales both in space

and time. These arguments are equally applied to the Sabra model of turbulence and the

corresponding Eq. (1.1). We show, however, that the dynamical system approach can be used

immediately after the blowup time t
b

, if formulated for the logarithmic time ⌧ = log(t� t
b

). A

crucial observation leading to the stochastic description is that the solution at every time t > t
b

undergoes an infinitely long chaotic evolution with respect to ⌧. We argue that this leads to

the unique physically relevant description of the inviscid flow as a probability distribution for

solutions u(x, t) at t > t
b

.

The paper is organized as follows. In Section 2 we show how the dynamics before and after

the blowup in the inviscid Burgers equation can be translated into traveling wave solutions

of respective renormalized systems. This representation is used in Section 3 to explain quali-

tatively the origin of the stochasticity phenomenon. Section 4 introduces the Sabra model of

turbulence and its continuous representation (1.1). Section 5 explains the universal self-similar

structure of a finite-time blowup. Section 6 describes the solution at blowup time. Section 7

demonstrates the universal emergence of a stochastic process from a deterministic blowup state.

We end with the Conclusions.
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

Blowup (generic solution, simplified by symmetries):

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
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= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,
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e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the
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Renormalized (logarithmic) coordinates:

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
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equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as
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Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the
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Renormalized inviscid equation:

2 Internal “clock” of the blowup
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equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by
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Figure 1: Blowup in the inviscid Burgers equation with the initial condition u0(x) = �x + x3

at t0 = �1. (a) Black curves show classical solutions at t = �e�⌧ (⌧ = 0, 1, 2) before the

blowup. Red curves show shock wave solutions at t = e⌧ (⌧ = �2,�1, 0, 1) after the blowup.

Renormalized solutions: (b) v(⇠, ⌧) before the blowup (⌧ = 0, 1, 2, . . .) and (c) w(⇠, ⌧) after

the blowup (⌧ = . . . ,�2,�1, 0, 1) represent traveling waves moving with the constant speed

a = 3/2 in opposite directions.

blowup location x = e�⇠ ! 0. Therefore, as the wave propagates to larger ⇠, smaller values of

x are a↵ected. At infinite time ⌧ , all scales get excited forcing the solution to blow up.

Using coordinates (2.4), we write

@u

@t
= �

✓
@v

@⌧
+ v

◆
e2⌧�⇠,

@u

@x
=

✓
@v

@⇠
� v

◆
e⌧ . (2.7)

Then the inviscid (⌫ = 0) Burgers equation (1.1) gets the form

@v

@⌧
= �v + v2 � v

@v

@⇠
. (2.8)

The traveling wave (2.5) is a solution of this equation, as it follows from the derivation and

can also be checked directly. A general blowup description should take into account the o(u3)

correction in Eq. (2.2). This yields a similar picture, but now the solution v(⇠, ⌧) becomes

the traveling wave (2.5) asymptotically for large ⌧ , i.e., the blowup is associated with a stable
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Figure 1: Blowup in the inviscid Burgers equation with the initial condition u0(x) = �x + x3

at t0 = �1. (a) Black curves show classical solutions at t = �e�⌧ (⌧ = 0, 1, 2) before the

blowup. Red curves show shock wave solutions at t = e⌧ (⌧ = �2,�1, 0, 1) after the blowup.

Renormalized solutions: (b) v(⇠, ⌧) before the blowup (⌧ = 0, 1, 2, . . .) and (c) w(⇠, ⌧) after

the blowup (⌧ = . . . ,�2,�1, 0, 1) represent traveling waves moving with the constant speed

a = 3/2 in opposite directions.

blowup location x = e�⇠ ! 0. Therefore, as the wave propagates to larger ⇠, smaller values of

x are a↵ected. At infinite time ⌧ , all scales get excited forcing the solution to blow up.

Using coordinates (2.4), we write
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solution v = F (⇠�a⌧) of Eq. (2.8). Note that stability of this solution allows irrelevant unstable

modes associated with the action of the symmetry group [14].

For times after the blowup, t > 0, only a weak discontinuous solution exists. It can be

uniquely defined as a solution of the viscous Burgers equation in the inviscid limit, ⌫ ! 0+ [11].

This solution is given by the same Eq. (2.2), but now one should choose positive (negative)

values of u before (after) a discontinuity x = x
s

(t), which propagates with the speed dx
s

/dt =

[u(x+
s

) + u(x�
s

)] /2, Fig. 1(a). The discontinuity is located at the origin, x
s

(t) ⌘ 0, if one omits

the o(u3) term in Eq. (2.2).

The renormalized description for positive times is given by the variables

t = e⌧, x = e�⇠, u = �we�⌧�⇠, (2.9)

where we modified the first and the last expression as compared to Eq. (2.4). Analogous

derivations yield the inviscid Burgers equation written in new coordinates as

@w

@⌧
= w + w2 � w

@w

@⇠
, (2.10)

and Eq. (2.2) provides the stable traveling wave solution

w = G(⇠ + a⌧), a = 3/2, (2.11)

where G(⌘) is a function defined by a positive root of the equation

1 = �G+ e�2⌘G3. (2.12)

Now the blowup time, t ! 0+, corresponds to ⌧ ! �1. Hence, the increasing ⌧ describes

the evolution from the blowup on. The wave (2.11) travels with the speed a in the negative

direction, from large positive ⇠ (corresponding to small scales x), Fig. 1(c). It describes a

universal way how a discontinuity develops in a weak solution u(x, t) immediately after the

blowup.

The presented description turns the evolution on each side of the blowup into a dynamical

system, where a stable fixed-point (traveling wave) solution describes a universal shape of

the blowup. The crucial element of this description is the logarithmic time ⌧ used to unfold

the finite-time singular behavior. This is not just an algebraic construction, but it reflects

the infinite-dimensional nature of the blowup phenomenon. An every constant interval �⌧ =

(log 2)/a, in which the wave travels for a distance �⇠ = log 2, describes the time required for

an excitation to evolve from the scale x = e�⇠ to the twice smaller scale x/2 = e�(⇠+�⇠). Thus,
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means
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Blowup: before and after
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One can expect periodic, quasi-periodic or chaotic waves



Models
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2. One-dimensional hydrodynamic models

We consider one-dimensional models for a scalar variable u(x, t) in the form

∂u

∂t
+

∂g

∂x
= ν

∂2u

∂x2
+ f, x, t ∈ R, (2.1)

where ν is a viscous coefficient, f (x, t) is the forcing term and

g(x, t) = 1
2π

∫ ∫
K(y − x, z − x)u(y, t)u(z, t)dydz (2.2)

is the nonlocal quadratic flux term. For hydrodynamic models, where the quadratic term
originates from the convective acceleration (and pressure for inviscid flows), it is natural to
assume that K(y, z) is a real homogeneous function of degree −2. Therefore, it can be
considered in the form

K(y, z) =
∫ ∫

ϕ

(
p

p + q

)
e−i(py+qz)dpdq, (2.3)

with a real function ϕ(ξ). For example, the product of Dirac delta functions K(y, z) =
πδ(y)δ(z) corresponds to ϕ ≡ (4π)−1 and generates the Burgers equation with g = u2/2 in
equation (2.1).

We do not specify the functional spaces for solutions u(x, t) and for the kernel K(y, z),
assuming that they allow the integral (Fourier) transformations used below. We will comment
on this issue when considering a specific form of K(y, z) in the next section. It is clear that the
function K(y, z) in equation (2.2) can always be chosen symmetric, i.e. K(y, z) = K(z, y).
One can check that permuting the variables y ↔ z in the expression (2.3) is equivalent to
permuting p ↔ q and substituting ϕ(ξ) by ϕ(1 − ξ). Thus, the symmetry of K(y, z) is
equivalent to the condition

ϕ(ξ) = ϕ(1 − ξ), (2.4)

which will be assumed from now on.
For the Fourier transformed function u(k) =

∫
u(x)e−ikxdx, equations (2.1)–(2.3)

reduce to
∂u(k)

∂t
= −ik

∫
ϕ

(p

k

)
u(p)u(k − p)dp − ν|k|2αu(k) + f (k), (2.5)

where we omitted the argument t for simplicity of notations. We also introduced the parameter
α, such that α = 1 corresponds to equation (2.1) and α > 1 determines the model with
hyperviscosity. The mean value

∫
u(x)dx is conserved by equation (2.1) provided that∫

f (x)dx = 0 and g → 0, ∂u/∂x → 0 as |x| → ∞. We will assume the vanishing mean
values, leading to f (k) = u(k) = 0 for k = 0. Recall the reality condition u(−k) = u∗(k) for
the Fourier transformed real function, where the asterisk denotes the complex conjugation.

2.1. Energy conservation

We define the energy as

E = 1
2

∫
u2(x)dx = 1

4π

∫
|u(k)|2dk. (2.6)

Let us show that the energy conservation condition in the inviscid model with zero force
(ν = f = 0) is given by the equality

ϕ (ξ) − ξϕ

(
1
ξ

)
+ (ξ − 1)ϕ

(
1

1 − ξ

)
= 0 (2.7)
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Nonlinearity and nonlocality

Incompressible Navier-Stokes equations: NS equations resolved w.r.t. pressure:

1D models that mimic a nonlocal quadratic nonlinearity:

(nonlocal quadratic nonlinearity)

Extra conditions on the kernel function K(y,z): 
energy conservation, Hamiltonian structure. etc.

Example: Constantin–Lax–Majda equation

2 H Okamoto et al

We first give numerical evidence which shows that the solution of (1) exists globally in
time. De Gregorio [7, 8] considered (1) in order to contrast it with

ωt − vxω = 0, vx = Hω. (2)

This equation is called the Constantin–Lax–Majda equation (CLM for short) and was
introduced in [6] as a model for blow-up dynamics of vorticity of incompressible inviscid
fluid flow. In fact, as is rigorously proved in [6], most of the solutions of (2) blow up in finite
time. De Gregorio proposed his equation to show that his equation, though it differs from the
CLM equation only by the convection term vωx , is likely to admit no blow-up. He gave some
evidence but mathematical proof is yet to be given, and there is much room for scrutiny. We
cannot prove the global existence of solutions of (1) either, but we present accurate numerical
results conforming with the global existence.

We then consider a generalization of the CLM equation and De Gregorio’s equation in the
following form:

ωt + avωx − vxω = 0, vx = Hω, (3)

where a is a real parameter. If a = 0, it becomes the CLM equation [6]. If a = 1, it is De
Gregorio’s equation. If a = −1, then this is the equation considered by Córdoba et al [4, 5].
The authors of [4, 5] considered

θt + θxHθ = 0 (4)

and mathematically proved that this equation possesses many blow-up solutions. If we
differentiate (4) and set ω = −θx , then ω satisfies the generalized De Gregorio equation
with a = −1. Since we are going to argue that equation (3) with a = 1 admits no blow-up,
this contrast may be of some interest.

This paper is organized as follows. A motivation for (3) is explained in section 2. Section 3
introduces theorems on the local existence and a criterion on the global existence. Based on
these theorems, we give in section 4 the results by numerical experiments about De Gregorio’s
equation. Proofs of the theorems are presented in section 5. Then in section 6, we prove that
equation (3) in the limit of a → ∞ admits no blow-up. Concluding remarks are given in
section 7.

2. The role of the convection term

It is rather interesting to note the fact that

• equation (3) with a = −1 has blow-up solutions [4, 5];
• if a = 0, most solutions blow up in finite time [6];
• if a = 1, solutions exist globally in time, which is conjectured in [7, 8] and this paper.

This naturally leads us to the question about which values of a yield the global existence for
the respective solution.

By analogy with the 3D Euler equations, the term vωx in (1) or (3) may be called a
convection term. The term −vxω may be called a stretching term. In fluid dynamics literature,
the blow-up of the solutions of the 3D Euler equations is said to be caused by the stretching
term. It is also said that the convection term is a kind of neutral player, having little influence
on blow-up phenomena. Recently, however, [16, 17] showed, with many examples, that a
convection term often plays a role more important than is usually imagined. Hou and Li [9]
have drawn a similar conclusion for axisymmetric flows with swirl reduced from the 3D Euler
and Navier Stokes equations. In fact, blow-ups can be suppressed by a convection term, if



Special cases: Desnyansky-Novikov shell model

Desnyansky-Novikov shell model equations
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Here we used the Poisson bracket known for the Korteweg–de Vries (KdV) and inviscid Burgers
equations [14,27]. Note that this Poisson bracket is noncanonical and has the Casimir invariant
C =

∫
udx, which we set earlier to zero.

In order to derive equation (2.15), we write expression (2.3) in the form

K(y − x, z − x) =
∫ ∫ ∫

ϕ
(
−p

k

)
e−i(kx+py+qz)δ(k + p + q)dpdqdk, (2.18)

while similar expressions for K(z−y, x−y) and K(x−z, y−z) are obtained after substituting
ϕ

(
−p

k

)
by ϕ

(
− q

p

)
and ϕ

(
− k

q

)
, respectively. Using these expressions with notations (2.11)

and condition (2.4), one can see that equation (2.14) implies

K(z − y, x − y) + K(x − z, y − z) = 2K(y − x, z − x). (2.19)

Then, for F = u(x ′) and G = H from equation (2.16), we have

δF

δu(x)
= δ(x − x ′),

δG

δu(x)
= 1

6π

∫ ∫
[K(y − x, z − x) + K(z − y, x − y) + K(x − z, y − z)] u(y)u(z)dydz

= 1
2π

∫ ∫
K(y − x, z − x)u(y)u(z)dydz, (2.20)

where the last equality follows from equation (2.19). Substituting these expressions into
equations (2.15) and (2.17) yields equations (2.1) and (2.2) with ν = f = 0.

3. Continuous representation of the Desnyansky–Novikov model

Let us consider the function

ϕ(ξ) = 1
2
δ

(
ξ − 1

2

)
+ 2δ(ξ + 1) + 2δ(ξ − 2), (3.1)

which is the sum of three Dirac delta functions. For the physical space representation of model
(2.1) and (2.2), we should find the kernel K(y, z) given by equation (2.3) with the function
(3.1). The integrals in equation (2.3) can be taken explicitly using the relation

δ

(
ξ − ξ0

a(ξ)

)
= |a(ξ0)|δ(ξ − ξ0). (3.2)

For the first term, we obtain
∫

1
2
δ

(
p

p + q
− 1

2

)
e−i(py+qz)dpdq =

∫
1
2
δ

(
p − q

2(p + q)

)
e−i(py+qz)dpdq

= 2
∫

|q|e−iq(y+z)dq = − 4
(y + z)2

, (3.3)

where we used that the Fourier transform of |x| is the generalized function −2k−2 =
2 d

dk

[
p.v.

( 1
k

)]
, see e.g. [17]. Integrating similarly the other terms in equations (2.3) and (3.1),

yields

K(y, z) = − 4
(y + z)2

− 4
(y − 2z)2

− 4
(z − 2y)2

, (3.4)

and one should consider the singular integrals in equation (2.2) with the Hadamard
regularization.
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The Fourier transformed continuous model has a simpler form. Indeed, substituting ϕ(ξ)

from equation (3.1) into equation (2.5) and using equation (3.2) yields

∂u(k)

∂t
= −ik|k|

[
1
2
u2

(
k

2

)
+ 4u∗(k)u(2k)

]
− ν|k|2αu(k) + f (k), (3.5)

where we used the reality condition u(−k) = u∗(k). We will show now that this equation is
equivalent to an infinite set of uncoupled discrete (shell) models.

Let us define the geometric progression

kn = k0λ
n, λ = 23/2, n ∈ Z, (3.6)

and the corresponding variables

un = −ik1/3
n u

(
k2/3
n

)
, fn = −ik1/3

n f
(
k2/3
n

)
. (3.7)

Then equation (3.5) taken for k = k
2/3
n reduces to the form

∂un

∂t
= knu

2
n−1 − kn+1u

∗
nun+1 − νnun + fn, n ∈ Z, (3.8)

where introduced the viscous factors

νn = νk4α/3
n . (3.9)

Equation (3.8) is the shell model, where kn is the shell wavenumber (forming a geometric
progression in n), un ∈ C is the complex shell speed, and the interaction occurs between the
neighboring shells.

One may consider the real variables un ∈ R. According to relation (3.7), this is the case
when u(k) is a purely imaginary function and, hence, the solution of the continuous model is
an odd function in physical space, u(−x) = −u(x). For real variables, system (3.8) becomes

∂un

∂t
= knu

2
n−1 − kn+1unun+1 − νnun + fn, n ∈ Z. (3.10)

This system is known as the Desnyansky–Novikov (DN) shell model [11], also called the
dyadic shell model. Note that, due to the exponent 4α/3 in this viscous term (3.9), the
conventional choice of νn = νk2

n in the shell model corresponds to the continuous model (3.5)
with hyperviscosity given by α = 3/2.

We have shown that the hydrodynamic model given by equations (2.1)–(2.3) and (3.1)
splits into a set of equivalent infinite-dimensional subsystems (3.8). Each of these subsystems
corresponds to a specific value of the parameter k0 in equation (3.6), which must be taken in
the interval

1 ! k0 < λ. (3.11)

For odd continuous solutions, u(−x) = −u(x), these subsystems take the form of the DN
shell model (3.10), where the real variables un are related to u(k) by equation (3.7).

3.1. Energy conservation and Hamiltonian form

Let us consider the shell model (3.8) in the inviscid unforced case, i.e. when νn = fn = 0 for
all n. Using equation (3.2), one can check that the function (3.1) satisfies the conditions

ϕ (ξ) = ϕ (1 − ξ) = ϕ

(
1
ξ

)
= ϕ

(
1

1 − ξ

)
, (3.12)

which imply the simultaneous energy conservation and Hamiltonian structure, see
equations (2.4), (2.7) and (2.14).
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invariants, the energy E =
P

|u
n

|2 and the helicity H =
P

(�1)nk
n

|u
n

|2 (the summation over

all n is assumed).

Solutions of viscous shell models exist and unique globally in time [9]. For the inviscid

models, i.e., with ⌫ = 0 in Eq. (4.1), the criterion of existence and uniqueness of the solution

requires a finite (enstrophy) norm

kuk1 =
⇣X

k2
n

|u
n

|2
⌘1/2

. (4.3)

If kuk1 = 1, the solution can be defined in a weak sense, but its uniqueness is not known [10].

We will also consider an entirely di↵erent derivation of the Sabra model [34]. For the specific

value of the inter-shell ratio,

� =

q
2 +

p
5 ⇡ 2.058, (4.4)

the Sabra model can be derived rigorously from the one-dimensional viscous conservation law

(1.1). Here the nonlocal flux function is given by

f =

ZZ
K(y � x, z � x)u(y, t)u(z, t)dydz (4.5)

with the kernel

K(y, z) =
K
 

(y, z) +K
 

(z, y)

4⇡
, K

 

(y, z) =
2�

(�y � z)2
� �2

(�2y � z)2
+

�

(�y + z)2
, (4.6)

where � = (1 +
p
5)/2 is the golden ratio. Singular integrals in Eq. (4.5) must be taken

with the Hadamard regularization. Let u(x, t) be a solution of Eqs. (1.1), (4.5), (4.6), and

û(k, t) =
R
u(x, t)e�ikxdx its Fourier transform. Then, for every fixed 1  k0 < �, the functions

u
n

(t) = k1/3
n

û
�
k2/3
n

, t
�
, k

n

= k0�
n, (4.7)

yield a solution of the Sabra model (4.1), (4.2), see [34]. Therefore, Eq. (1.1) in the Fourier

representation splits into a family of independent Sabra models parametrized by k0.

Note that the nonlocal quadratic term (4.5) is natural for a model of turbulence, because it

reflects a nonlocal character of the pressure term in incompressible flows. In the next sections,

we study the Sabra model, taking into account that the conclusions are automatically valid for

its one-dimensional continuous representation (1.1).

5 Self-similar dynamics before blowup

Let us consider the inviscid Sabra model

du
n

dt
= N

n

[u], n = 1, 2, 3, . . . . (5.1)
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The Fourier transformed continuous model has a simpler form. Indeed, substituting ϕ(ξ)
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where we used the reality condition u(−k) = u∗(k). We will show now that this equation is
equivalent to an infinite set of uncoupled discrete (shell) models.

Let us define the geometric progression
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and the corresponding variables
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n reduces to the form
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where introduced the viscous factors

νn = νk4α/3
n . (3.9)

Equation (3.8) is the shell model, where kn is the shell wavenumber (forming a geometric
progression in n), un ∈ C is the complex shell speed, and the interaction occurs between the
neighboring shells.

One may consider the real variables un ∈ R. According to relation (3.7), this is the case
when u(k) is a purely imaginary function and, hence, the solution of the continuous model is
an odd function in physical space, u(−x) = −u(x). For real variables, system (3.8) becomes

∂un

∂t
= knu

2
n−1 − kn+1unun+1 − νnun + fn, n ∈ Z. (3.10)

This system is known as the Desnyansky–Novikov (DN) shell model [11], also called the
dyadic shell model. Note that, due to the exponent 4α/3 in this viscous term (3.9), the
conventional choice of νn = νk2

n in the shell model corresponds to the continuous model (3.5)
with hyperviscosity given by α = 3/2.

We have shown that the hydrodynamic model given by equations (2.1)–(2.3) and (3.1)
splits into a set of equivalent infinite-dimensional subsystems (3.8). Each of these subsystems
corresponds to a specific value of the parameter k0 in equation (3.6), which must be taken in
the interval

1 ! k0 < λ. (3.11)

For odd continuous solutions, u(−x) = −u(x), these subsystems take the form of the DN
shell model (3.10), where the real variables un are related to u(k) by equation (3.7).

3.1. Energy conservation and Hamiltonian form

Let us consider the shell model (3.8) in the inviscid unforced case, i.e. when νn = fn = 0 for
all n. Using equation (3.2), one can check that the function (3.1) satisfies the conditions

ϕ (ξ) = ϕ (1 − ξ) = ϕ

(
1
ξ

)
= ϕ

(
1

1 − ξ

)
, (3.12)

which imply the simultaneous energy conservation and Hamiltonian structure, see
equations (2.4), (2.7) and (2.14).
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The Fourier transformed continuous model has a simpler form. Indeed, substituting ϕ(ξ)

from equation (3.1) into equation (2.5) and using equation (3.2) yields

∂u(k)

∂t
= −ik|k|
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1
2
u2

(
k

2

)
+ 4u∗(k)u(2k)

]
− ν|k|2αu(k) + f (k), (3.5)

where we used the reality condition u(−k) = u∗(k). We will show now that this equation is
equivalent to an infinite set of uncoupled discrete (shell) models.

Let us define the geometric progression

kn = k0λ
n, λ = 23/2, n ∈ Z, (3.6)

and the corresponding variables

un = −ik1/3
n u

(
k2/3
n

)
, fn = −ik1/3

n f
(
k2/3
n

)
. (3.7)

Then equation (3.5) taken for k = k
2/3
n reduces to the form

∂un

∂t
= knu

2
n−1 − kn+1u

∗
nun+1 − νnun + fn, n ∈ Z, (3.8)

where introduced the viscous factors

νn = νk4α/3
n . (3.9)

Equation (3.8) is the shell model, where kn is the shell wavenumber (forming a geometric
progression in n), un ∈ C is the complex shell speed, and the interaction occurs between the
neighboring shells.

One may consider the real variables un ∈ R. According to relation (3.7), this is the case
when u(k) is a purely imaginary function and, hence, the solution of the continuous model is
an odd function in physical space, u(−x) = −u(x). For real variables, system (3.8) becomes

∂un
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2
n−1 − kn+1unun+1 − νnun + fn, n ∈ Z. (3.10)

This system is known as the Desnyansky–Novikov (DN) shell model [11], also called the
dyadic shell model. Note that, due to the exponent 4α/3 in this viscous term (3.9), the
conventional choice of νn = νk2

n in the shell model corresponds to the continuous model (3.5)
with hyperviscosity given by α = 3/2.

We have shown that the hydrodynamic model given by equations (2.1)–(2.3) and (3.1)
splits into a set of equivalent infinite-dimensional subsystems (3.8). Each of these subsystems
corresponds to a specific value of the parameter k0 in equation (3.6), which must be taken in
the interval

1 ! k0 < λ. (3.11)

For odd continuous solutions, u(−x) = −u(x), these subsystems take the form of the DN
shell model (3.10), where the real variables un are related to u(k) by equation (3.7).

3.1. Energy conservation and Hamiltonian form

Let us consider the shell model (3.8) in the inviscid unforced case, i.e. when νn = fn = 0 for
all n. Using equation (3.2), one can check that the function (3.1) satisfies the conditions

ϕ (ξ) = ϕ (1 − ξ) = ϕ

(
1
ξ

)
= ϕ

(
1

1 − ξ

)
, (3.12)

which imply the simultaneous energy conservation and Hamiltonian structure, see
equations (2.4), (2.7) and (2.14).
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∗
nun+1 − νnun + fn, n ∈ Z, (3.8)

where introduced the viscous factors

νn = νk4α/3
n . (3.9)

Equation (3.8) is the shell model, where kn is the shell wavenumber (forming a geometric
progression in n), un ∈ C is the complex shell speed, and the interaction occurs between the
neighboring shells.

One may consider the real variables un ∈ R. According to relation (3.7), this is the case
when u(k) is a purely imaginary function and, hence, the solution of the continuous model is
an odd function in physical space, u(−x) = −u(x). For real variables, system (3.8) becomes

∂un

∂t
= knu

2
n−1 − kn+1unun+1 − νnun + fn, n ∈ Z. (3.10)

This system is known as the Desnyansky–Novikov (DN) shell model [11], also called the
dyadic shell model. Note that, due to the exponent 4α/3 in this viscous term (3.9), the
conventional choice of νn = νk2

n in the shell model corresponds to the continuous model (3.5)
with hyperviscosity given by α = 3/2.

We have shown that the hydrodynamic model given by equations (2.1)–(2.3) and (3.1)
splits into a set of equivalent infinite-dimensional subsystems (3.8). Each of these subsystems
corresponds to a specific value of the parameter k0 in equation (3.6), which must be taken in
the interval

1 ! k0 < λ. (3.11)

For odd continuous solutions, u(−x) = −u(x), these subsystems take the form of the DN
shell model (3.10), where the real variables un are related to u(k) by equation (3.7).

3.1. Energy conservation and Hamiltonian form

Let us consider the shell model (3.8) in the inviscid unforced case, i.e. when νn = fn = 0 for
all n. Using equation (3.2), one can check that the function (3.1) satisfies the conditions

ϕ (ξ) = ϕ (1 − ξ) = ϕ

(
1
ξ

)
= ϕ

(
1

1 − ξ

)
, (3.12)

which imply the simultaneous energy conservation and Hamiltonian structure, see
equations (2.4), (2.7) and (2.14).
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Figure 4. Inviscid Sabra model with no forcing in the 2D regime (c = λ−2). (a)
Evolution of complex shell velocities Un(t) for initial conditions (4.27). Only real parts
are shown. (b) Physical space representation u(x, t) of the shell model solution Un(t).

with the initial conditions

t = 0 : U0 = i, U1 = 2, Un = 0, n ! 2. (4.27)

According to equations (4.5), (4.6) and (4.25), the Fourier transformed solution u(k, t) of the
continuous model is given by

u(k, t) = k−1/2un(k0, t) = k−1/2k−1
0 Un(t), k = k2/3

n = k
2/3
0 σ n, (4.28)

with the reality condition u(−k) = u∗(k) for negative k. Recall that u(k) = 0 for k = 0 due
to the vanishing mean value condition,

∫
u dx = 0, assumed in section 2. The corresponding

solution u(x, t) in physical space is given by the inverse Fourier transform.
The solutions can be found numerically with high accuracy by considering a finite number

of shells, as it was done in section 3.3. The numerical results are presented in figure 4, showing
the physical space representation of the single solution Un(t) for the Sabra model in 2D regime.
This solution is smooth as expected due to regularity of the inviscid 2D Sabra model.

Now let us consider the case c = −λ−1 ≈ −0.486. In this case the conserved quantity
(4.17) is not sign definite and can be associated with the helicity. For this reason, equation (4.23)
with c = −λ−1 is considered as the shell model for three-dimensional inviscid flow (3D Euler
equations). For this Sabra model, there exists a unique local in time solution if the initial
conditions have the finite norm

∑
n k2

n|un|2 < ∞, see [10]. In general, the solution leads to a
finite-time blowup [23] characterized by the infinite norm

∑
n k2

n|un|2 → ∞ as t → tb − 0.
This blowup has the self-similar asymptotic form for large shells n and t → tb. This form,
up to system symmetries, is given by the expression un(t) → −ik−y

n U(k
1−y
n (t − tb)), where y

and U(t) are the universal real scaling exponent and real function depending only on the Sabra
model parameter c [25].

For numerical solution, we consider complex initial conditions (4.24) leading to the
solution (4.25) of the system (4.26) and (4.27) with c = −λ−1. The solution Un(t) found
numerically is presented in figure 5(a). The blowup occurs at tb ≈ 0.716, and one can recognize
the asymptotic self-similar form of this solution developing for large n near the blowup time.
The corresponding physical space solution u(x, t) of the continuous model is obtained using
equation (4.28) with the inverse Fourier transform. The result is shown in figure 5(b). One can
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)

∂t
= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)

∂t
= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
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(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)
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= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
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2 +
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Then equation (4.4) taken for k = k
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0 σ n reduces to the form

∂un
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Figure 2. Solutions of the DN shell model with constant forcing (3.25) and zero initial
conditions: (a) viscous coefficient ν = 0.1, (b) viscous coefficient ν = 10−5.

Due to the viscous coefficients (3.27), which grow as λ4n/3 = 22n, the shell speeds decay
rapidly for large n. Thus, the numerical solution can be obtained with high accuracy using a
finite number of shell velocities un with n = 0, . . . , N and assuming vanishing velocities for
other shells (for example, for ν = 10−4, one has u20 ∼ 10−25). The numerical solutions are
shown in figure 2. One can observe the special behavior near t∗ ≈ 0.691 in figure 2(a), which
corresponds to the viscous coefficient ν = 0.1. In the vanishing viscosity limit ν → +0, the
point t∗ corresponds to a finite time blowup, see figure 2(b). For larger times, a steady state is
formed.

For constructing the corresponding solution of the continuous model, we use
equations (3.13) and (3.28), which yield the Fourier transformed solution u(k, t). The inverse
Fourier transform (performed numerically as described in [2]) yields the solution u(x, t) in
physical space. Figure 3 shows the solution u(x, t) corresponding to the DN model with
two different viscous coefficients, ν = 0.1 and ν = 0.01. These solutions demonstrate the
formation of a smooth standing wave. For small viscosity, this solution converges to the
inviscid solution described earlier, i.e. to the finite time blowup followed by formation of a
shock wave. The blowup point corresponds to x = u = 0 and t∗ ≈ 0.691, as obtained from
the shell model solution in figure 2(b). This point is shown in figure 3(b) by a bold red point.
Also, for comparison, this figure shows the stationary solution of the inviscid model (bold blue
line located at t = 1.5), which was obtained earlier in figure 1(b).

We conclude that physical space solutions u(x, t), which are induced by solutions of the
DN shell model, are similar to solutions of scalar conservation laws: a shock wave is formed
in finite time in the inviscid model, while the viscosity transforms this shock into a smooth
wave solution.

4. Continuous representation of the Sabra model

In this section, we consider the one-dimensional hydrodynamic model (2.1)–(2.3) given by the
function

ϕ(ξ) = ψ(ξ) + ψ(1 − ξ)

2
, ψ(ξ) = −σ 3δ(ξ − σ 2) + (1 + c)δ(ξ − σ ) + cσ−3δ

(
ξ − σ−1) ,

(4.1)
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Figure 1. Stationary shock wave solution u(x) (bold line) and forcing f (x) (thin line)
for the inviscid continuous model. This solution corresponds to the DN shell model for:
(a) forcing fn = 2k

1/3
0 δn0 with the stationary solution (3.21); (b) forcing fn = 2k−1

0 δn0

with the stationary solution (3.26).

assuming no perturbation of the shells with n < 0 corresponding to large scales. In this case,
un ≡ 0 for n < 0 and t ! 0. Thus, the dynamics is restricted to the shells with n ! 0.

One can check by direct substitution that

un = k−1/3
n , n ! 0, (3.21)

is a fixed-point solution of equation (3.19), where kn = k0λ
n with λ = 23/2. This family of

stationary solutions {un}n∈Z defined for each k0 from the interval (3.11) induces a stationary
solution u(x) of the corresponding continuous model (2.1), (2.2) and (3.4) with vanishing
viscosity ν = 0 and specific constant forcing f (x). The Fourier transformed continuous
solution u(k) and forcing f (k) can be found using equations (3.6) and (3.7) with k = k

2/3
n as

u(k) = ik−1/2un, f (k) = ik−1/2fn, k = k2/3
n = k

2/3
0 2n. (3.22)

Recall that u(k) = 0 was assumed for k = 0. Also, un = 0 for negative n, i.e. u(k) = 0
for 0 " k < 1. Using fn from equation (3.19) and the solution (3.21) in equation (3.22), we
obtain

u(k) =
{

ik−1, |k| ! 1;
0, |k| < 1; f (k) =

{
2i sgn(k), 1 " |k| < 2;
0, |k| /∈ [1, 2); (3.23)

where the values for negative k are obtained from the reality condition u(−k) = u∗(k). The
physical space solution u(x) and forcing f (x) are found using the inverse Fourier transform
u(x) = 1

2π

∫
u(k)eikxdk as

u(x) = si|x|
π

sgn x, f (x) = − 4
πx

sin
3x

2
sin

x

2
, (3.24)

where si(x) = −
∫ ∞
x

sin t
t

dt is the sine integral function. The functions (3.24) are shown
in figure 1(a). The forcing f (x) is analytic, while the solution u(x) has a discontinuity at
x = 0. Thus, the stationary shell model solution (3.21) corresponds to the standing shock
wave solution (3.24) for the continuous model.
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Figure 3. Physical space solutions u(x, t) induced by solutions of the viscous DN shell
model with constant forcing (3.25) and zero initial conditions: (a) viscous coefficient
ν = 0.1, (b) viscous coefficient ν = 0.01. The red point in the right figure shows the
location of blowup for the inviscid system. Also, the right figure shows the stationary
solution of the inviscid model (bold blue line located at t = 1.5), see figure 1(b).

where c is a constant real parameter and σ = (1+
√

5)/2 ≈ 1.618 is the golden ratio satisfying
the equation

1 + σ = σ 2. (4.2)

After substituting expression (4.1) into equation (2.3), the lengthy derivations similar to
equation (3.3) with the use of equation (4.2) yield the kernel of the continuous model in
the form

K(y, z) = Kψ (y, z) + Kψ (z, y), Kψ (y, z) = σ

(σy − z)2
− (1 + c)σ 2

(σ 2y − z)2
− cσ

(σy + z)2
. (4.3)

Singular integrals in equation (2.2) must be taken with the Hadamard regularization.
The Fourier transformed continuous model is obtained by substituting function (4.1) into

equation (2.5). Using relations (3.2) and (4.2), this yields

∂u(k)

∂t
= − ik|k|

(
−σ 3u(σ 2k)u(−σk) + (1 + c)u(σk)u(−σ−1k) + cσ−3u(σ−1k)u(σ−2k)

)

− ν|k|2αu(k) + f (k). (4.4)

Now let us define the geometric progression

kn = k0λ
n, λ = σ 3/2 =

√
2 +

√
5 ≈ 2.058, n ∈ Z, (4.5)

with 1 ! k0 < λ, and introduce the corresponding variables

un = k1/3
n u

(
k2/3
n

)
, fn = k1/3

n f
(
k2/3
n

)
. (4.6)

Then equation (4.4) taken for k = k
2/3
n = k

2/3
0 σ n reduces to the form

∂un

∂t
= i

[
kn+1un+2u

∗
n+1 − (1 + c)knun+1u

∗
n−1 − ckn−1un−1un−2

]
− νnun + fn, n ∈ Z,

(4.7)
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Figure 1. Stationary shock wave solution u(x) (bold line) and forcing f (x) (thin line)
for the inviscid continuous model. This solution corresponds to the DN shell model for:
(a) forcing fn = 2k

1/3
0 δn0 with the stationary solution (3.21); (b) forcing fn = 2k−1

0 δn0

with the stationary solution (3.26).

assuming no perturbation of the shells with n < 0 corresponding to large scales. In this case,
un ≡ 0 for n < 0 and t ! 0. Thus, the dynamics is restricted to the shells with n ! 0.

One can check by direct substitution that

un = k−1/3
n , n ! 0, (3.21)

is a fixed-point solution of equation (3.19), where kn = k0λ
n with λ = 23/2. This family of

stationary solutions {un}n∈Z defined for each k0 from the interval (3.11) induces a stationary
solution u(x) of the corresponding continuous model (2.1), (2.2) and (3.4) with vanishing
viscosity ν = 0 and specific constant forcing f (x). The Fourier transformed continuous
solution u(k) and forcing f (k) can be found using equations (3.6) and (3.7) with k = k

2/3
n as

u(k) = ik−1/2un, f (k) = ik−1/2fn, k = k2/3
n = k

2/3
0 2n. (3.22)

Recall that u(k) = 0 was assumed for k = 0. Also, un = 0 for negative n, i.e. u(k) = 0
for 0 " k < 1. Using fn from equation (3.19) and the solution (3.21) in equation (3.22), we
obtain

u(k) =
{

ik−1, |k| ! 1;
0, |k| < 1; f (k) =

{
2i sgn(k), 1 " |k| < 2;
0, |k| /∈ [1, 2); (3.23)

where the values for negative k are obtained from the reality condition u(−k) = u∗(k). The
physical space solution u(x) and forcing f (x) are found using the inverse Fourier transform
u(x) = 1

2π

∫
u(k)eikxdk as

u(x) = si|x|
π

sgn x, f (x) = − 4
πx

sin
3x

2
sin

x

2
, (3.24)

where si(x) = −
∫ ∞
x

sin t
t

dt is the sine integral function. The functions (3.24) are shown
in figure 1(a). The forcing f (x) is analytic, while the solution u(x) has a discontinuity at
x = 0. Thus, the stationary shell model solution (3.21) corresponds to the standing shock
wave solution (3.24) for the continuous model.
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in Fig. 2. Formally, this yields a deterministic system with a unique solution globally in time

(though this is not proved for the Navier-Stokes equations). Thus, a formal way that leads to a

stochastic limit must include a random component in a vanishing regularization term. This may

be a small-scale noise [27, 15] or a random viscosity perturbation [35], which vanish together

with the viscosity, as discussed earlier in the context of the inverse cascade of stochasticity in

the developed turbulence.

4 Sabra shell model of turbulence and its continuous

representation

Shell models are obtained by reducing the fluid dynamics equations (e.g., Naver–Stokes equa-

tions) to a discrete sequence of shells |k| = k
n

in the Fourier space for the geometric progression

of wavenumbers k
n

= k0�
n, n = 1, 2, 3, . . ., where � > 1 is the inter-shell ratio. Relating the

spatial scale to the wavenumber, ` ⇠ k�1
n

, one associates large scales with the initial shells,

n ⇠ 1, while small scales are given by large n. The “flow” is then described by complex vari-

ables u
n

(t), called shell speeds. Though no quantitative relation of such models to the original

flow equations is expected, the shell models possess a number of non-trivial (not yet fully un-

derstood) properties of turbulence like, e.g., the intermittency phenomenon. Clear advantages

of shell models are their relative simplicity and convenience for accurate numerical simulations.

In this paper, we consider the Sabra shell model [30], which was obtained after some im-

provements of the Gledzer–Ohkitani–Yamada (GOY) model [23, 37]. This model is given by

an infinite system of equations

du
n

dt
= N

n

[u]� ⌫k2
n

u
n

, n = 1, 2, 3, . . . , (4.1)

where ⌫ � 0 is a viscosity parameter and the quadratic nonlinear term is defined as

N
n

[u] = i

✓
k
n+1un+2u

⇤
n+1 �

1

2
k
n

u
n+1u

⇤
n�1 +

1

2
k
n�1un�1un�2

◆
, (4.2)

with the stars denoting the complex conjugation. The model must be suppled with large-scale

boundary conditions for the shell speeds u0 and u�1. One typically adds forcing terms f
n

acting at large scales (small n) in Eq. (4.1). For simplicity, but with no conceptual di↵erence

for the results, we will not consider such forcing; an external excitation can be produced by

the boundary conditions as it is typical in fluid dynamics. The model possesses two inviscid
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Renormalized system (Dombre&Gilson, 98)

For a generic initial condition, with a finite norm kuk1, the inviscid solution of the Sabra model

blows up in finite time, i.e., kuk1 ! 1 as the solution approaches the blowup time t ! t�
b

.

The local analysis presented in this section follows the construction of [12], see also further

developments in [31, 32, 33]. For this purpose, we introduce the rescaled shell variables v
n

and

time ⌧ as

u
n

= �ie
R ⌧
0 A(⌧ 0)d⌧ 0k�1

n

v
n

, t =

Z
⌧

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0, (5.2)

where the function A(⌧) is given by

A =
Re

P
v⇤
n

P
n

[v]P
|v

n

|2 , P
n

[v] = � 1

�2
v
n+2v

⇤
n+1 +

1

2
v
n+1v

⇤
n�1 +

�2

2
v
n�1vn�2. (5.3)

This transformation is well defined at times before the blowup and leads to the following

equations [12, 33]
dv

n

d⌧
= P

n

[v]� Av
n

, n = 1, 2, 3, . . . . (5.4)

It is straightforward to see that Eq. (5.4) with A from Eq. (5.3) conserves the sum
P

|v
n

|2.
Eq. (5.4) is translation-invariant with respect to the shell number n, i.e., it does not change

under the transformation v
n

7! v
n+j

for any j (except in the region near the boundary condi-

tion). It was shown numerically [33], that Eq. (5.4) of the Sabra model has a stable traveling

wave solution, which can be written as

v
n

(⌧) = ei✓nV (n� a⌧), (5.5)

where ✓
n

are arbitrary phases (resulting from an action of the symmetry group) such that

✓
n

= ✓
n�1+ ✓

n�2. The wave (5.5) propagates with the constant speed a in the direction of large

n (small scales), Fig. 3(a).

In the original variables (5.2), the asymptotic traveling wave solution (5.5) yields [12, 33]

u
n

(t) = �iei✓nkz�1
n

U(kz

n

(t� t
b

)), t < t
b

, (5.6)

where

z =
1

log �

Z 1/a

0

A(⌧)d⌧, U(t� t
b

) = e
R ⌧
0 A(⌧ 0)d⌧ 0V (�a⌧), t

b

=

Z 1

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0. (5.7)

The scaling exponent z is determined by the stable traveling wave solution and, hence, it is

universal (independent of initial conditions). The same refers to the function U(t), which is

universal up to the scaling symmetry. Numerical simulations in the case (4.4) yield z ⇡ 0.6975.
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Steady-state traveling wave:

Self-similar blowup:
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Figure 3: (a) Renormalized variables v
n

(⌧) forming a traveling wave for large ⌧ ; the shell

number n = 1, 2, . . . increases from the left to the right. The initial conditions are v1 = v2 = 1

(with zeros for other variables) at ⌧ = 0. (b) Corresponding dynamics of the original variables

u
n

(t) developing into a self-similar blowup. (c) Physical space representation u(x, t) of the

solution u
n

(t) at blowup time.

The function A(⌧) given by Eqs. (5.3) and (5.5) is periodic with the period ⌧ = 1/a. Hence,

using the first expression in Eq. (5.7), we find that the integral
Z

⌧

0

A(⌧ 0)d⌧ 0 = za⌧ log �+ h(⌧), (5.8)

where h(⌧) is a periodic function. It follows from Eq. (5.8) that the integral in the last expression

of Eq. (5.7) converges providing a finite blowup time, 0 < t
b

< 1. Thus, a traveling wave

solution (5.5) leads to the universal self-similar asymptotic behavior at times preceding the

blowup as described by Eq. (5.6), see Fig. 3(b).

Using Eq. (5.8) and k
n

= k0�
n, we write the asymptotic scaling of variables (5.2) as

u
n

/ �za⌧�nv
n

, t� t
b

/ ���za⌧ . (5.9)

Additionally, the physical scale of shell n is expressed as

` / k�1
n

/ ��n. (5.10)

The comparison of Eqs. (5.9), (5.10) with Eq. (2.4) shows that our description of the blowup in

the Sabra model is analogous to the one for the Burgers equation in Section 2. Here n stands

for the logarithmic space variable ⇠. The blowup is associated with a wave traveling to large n

with a constant speed in the logarithmic time ⌧ .
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Examples:

periodic, quasi-periodic and chaotic blowup in natural convection shell models (AM 2013);
chaotic blowup in helical shell models (de Pietro, Biferale, AM);
chaotic blowup in MHD shell models (Goedert, AM);

the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means

6

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the
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Figure 10. (a) Dynamics of renormalized variables vn(τ ) represents a chaotic wave moving with
average speed a towards large shells n. (b) The corresponding solution for original shell variables
un(t) blows up in finite time tc . The blowup is hard to recognize visually. However, it satisfies the
scaling laws (78)–(80) with the universal exponent y, see figure 9(b).

value of y. Also, for fixed-point and periodic attractors, the last expression in (76) reduces
to (37) and (69).

Since A(τ ) = ⟨A⟩ + δA(τ ), where δA oscillates near zero mean value, the inequality (42)
written for a = 1 holds, see figure 9(a). As a result, the integral in (40) converges for y > 0
providing the finite blowup time tc.

Figure 10(a) shows the speeds vn(τ ), whose dynamics can be viewed as a chaotic wave
moving towards large shell numbers n. Since one iteration of the Poincaré map corresponds
to the increase of wave position by one, the mean wave speed equals a. The wave amplitude
in renormalized variables vn and ϑn does not change, see (20). Using (76) we estimate

exp
(∫ τn

0
A(τ ′) dτ ′

)
= e⟨A⟩τn exp

(∫ τn

0
δA(τ ′) dτ ′

)
∼ e⟨A⟩τn ∼ e⟨A⟩n/a ∼ ky

n . (77)

Therefore, when the wave reaches the shell n, the shell speeds and temperatures can be
estimated by order of magnitude using (15) as

un = k−1
n exp

(∫ τn

0
A(τ ′) dτ ′

)
vn ∼ ky−1

n , (78)

θn = k−1
n exp

(
2

∫ τn

0
A(τ ′) dτ ′

)
ϑn ∼ k2y−1

n . (79)

The corresponding time interval to the blowup is found using (14), (40), (76) and (77) as

tc − t =
∫ ∞

τn

exp

(

−
∫ τ ′

0
A(τ ′′) dτ ′′

)

dτ ′ =
∫ ∞

0
exp

(

−
∫ ξ ′+τn

0
A(τ ′′) dτ ′′

)

dξ ′

= exp
(

−
∫ τn

0
A(τ ′′) dτ ′′

) ∫ ∞

0
exp

(

−
∫ ξ ′

0
A(ξ ′′ + τn) dξ ′′

)

dξ ′ ∼ k−y
n , (80)

where we changed the integration variables as τ ′ = ξ ′ + τn and τ ′′ = ξ ′′ + τn; note that the last
integral factor represents an oscillating quantity with finite mean value.

Periodic, quasi-periodic and chaotic blowup

2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the
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Figure 8. Shell velocities un(t) and temperatures θn(t) for the shell model with ε = −0.5. The
shells n = 24, . . . , 34 are shown, which correspond to the solution displayed in figure 7. The
solution blows up as t → t−c and has the period-4 structure visible in the figure.
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Figure 9. (a) The times τn and integrals In =
∫ τn

0 A(τ ) dτ corresponding to n iterations of the
Poincaré map P for ε = 0.01 (chaotic attractor). The dashed lines indicate the slopes 1/a and
⟨A⟩/a = y log h. (b) Power law scaling of shell speeds un(t) and temperatures θn(t) corresponding
to the times when nv = n. The dashed lines indicate the slopes y − 1 and 2y − 1 given by (78)
and (79).

ε = 0.01 used in [5, 12] corresponds to the chaotic attractor. Figure 9(a) shows the times τn

and the integrals
∫ τn

0 A(τ ) dτ corresponding to n iterations of the Poincaré map for ε = 0.01.
These quantities grow linearly with n up to small chaotic oscillations.

We introduce the quantities
1
a

= lim
n→∞

τn

n
> 0, ⟨A⟩ = lim

n→∞

1
τn

∫ τn

0
A(τ ) dτ, y = ⟨A⟩

a log h
, (76)

where 1/a represents the mean time step ⟨τn − τn−1⟩ of the Poincaré map and ⟨A⟩ is the mean
value of the function A(τ ) on the attractor. Note that an arbitrary value a > 0 can be obtained
after the time-scaling symmetry transformation (23), but this transformation does not alter the
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Figure 4. Periodic, quasi-periodic and chaotic attractors on the plane (vn, ϑn) for nv = 70. These
attractors correspond to ε = −0.5, ε = −0.35, and ε = 0.01, respectively.

In this case τ1 = 1/a, where 1/a is the time period determined by the Poincaré map. Using
definition (51) for the shell speeds in (52), we have

vn+1(τ + 1/a) = vn(τ ). (53)

It is easy to see that a general sequence vn(τ ) satisfying condition (53) has the form of a
travelling wave (36). The corresponding solution for the original variables un(t) is described
by theorem 2. Figure 5(a) shows the scaling exponent y from (37) as a function of ε computed
numerically (the values of y corresponding to other types of attractors are discussed later).
Since y > 0, the solution blows up at finite time tc given by (40).

All shell temperatures vanish, ϑn = 0, for the fixed-point attractor, as one can see from
figure 3(b). In order to capture the limiting behaviour of the original variables θn(t) near the
blowup, we must consider small perturbations δw(τ ) near the fixed-point w. Following the
classic perturbation theory (see, e.g. [34]), we consider the linearization of the Poincaré map



Real-world examples?

Is there evidence for a chaotic blowup 
in a real physical system?
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After blowup:  
non-uniqueness and  

spontaneous stochasticity



Blowup state

Continuous representation

Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n

(t) = �iei✓nkz�1
n

U(0). With no

loss of generality, we can drop the coe�cients assuming that

u
n

(t
b

) = �ikz�1
n

, (6.1)

which can be obtained by using a symmetry group of the Sabra model [33]. Eq. (6.1) describes

the asymptotic inviscid state for large shell numbers n. Using Eq. (4.7), one recovers the

function û(k, t
b

) = �ik�� for k > 0 and � = 2 � 3z/2 ⇡ 0.954, which is a Fourier transposed

solution of the continuous representation for the Sabra model. As a Fourier transform of a

real function, it extends to negative k < 0 as û(k) = û⇤(�k) = i|k|��. The inverse Fourier

transform yields [3]

u(x, t
b

) =
�(1� �)

⇡
cos

✓
�⇡

2

◆
|x|��1sgn x. (6.2)

This function is shown in Fig. 3(c) and it represents a discontinuity of the solution in physical

space, which is created at the blowup time. As � is close to 1, function (6.2) is close to a

discontinuity (shock), but has infinite limits at x = 0. One can also find numerically the

physical space representation u(x, t) of the asymptotic relation (5.6), which describes a self-

similar formation of a singularity (6.2) in a classical solution [34].

7 Spontaneously stochastic dynamics after blowup

In order to study the behavior after blowup, we introduce the new variables

t = t
b

+ �⌧, u
n

= �ik�1
n

��⌧w
n

= �ik�1
0 ��⌧�nw

n

. (7.1)

Together with the shell scale ` / k�1
n

= k�1
0 ��n, expressions (7.1) follow the analogous definition

(2.9) for the Burgers equation. For new variables, the inviscid Sabra model (5.1), (4.2) takes

the form
dw

n

d⌧
=

✓
w

n

� 1

�2
w

n+2w
⇤
n+1 +

1

2
w

n+1w
⇤
n�1 +

�2

2
w

n�1wn�2

◆
log �. (7.2)
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For a generic initial condition, with a finite norm kuk1, the inviscid solution of the Sabra model

blows up in finite time, i.e., kuk1 ! 1 as the solution approaches the blowup time t ! t�
b

.

The local analysis presented in this section follows the construction of [12], see also further

developments in [31, 32, 33]. For this purpose, we introduce the rescaled shell variables v
n

and

time ⌧ as

u
n

= �ie
R ⌧
0 A(⌧ 0)d⌧ 0k�1

n

v
n

, t =

Z
⌧

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0, (5.2)

where the function A(⌧) is given by

A =
Re

P
v⇤
n

P
n

[v]P
|v

n

|2 , P
n

[v] = � 1

�2
v
n+2v

⇤
n+1 +

1

2
v
n+1v

⇤
n�1 +

�2

2
v
n�1vn�2. (5.3)

This transformation is well defined at times before the blowup and leads to the following

equations [12, 33]
dv

n

d⌧
= P

n

[v]� Av
n

, n = 1, 2, 3, . . . . (5.4)

It is straightforward to see that Eq. (5.4) with A from Eq. (5.3) conserves the sum
P

|v
n

|2.
Eq. (5.4) is translation-invariant with respect to the shell number n, i.e., it does not change

under the transformation v
n

7! v
n+j

for any j (except in the region near the boundary condi-

tion). It was shown numerically [33], that Eq. (5.4) of the Sabra model has a stable traveling

wave solution, which can be written as

v
n

(⌧) = ei✓nV (n� a⌧), (5.5)

where ✓
n

are arbitrary phases (resulting from an action of the symmetry group) such that

✓
n

= ✓
n�1+ ✓

n�2. The wave (5.5) propagates with the constant speed a in the direction of large

n (small scales), Fig. 3(a).

In the original variables (5.2), the asymptotic traveling wave solution (5.5) yields [12, 33]

u
n

(t) = �iei✓nkz�1
n

U(kz

n

(t� t
b

)), t < t
b

, (5.6)

where

z =
1

log �

Z 1/a

0

A(⌧)d⌧, U(t� t
b

) = e
R ⌧
0 A(⌧ 0)d⌧ 0V (�a⌧), t

b

=

Z 1

0

e�
R ⌧ 0
0 A(⌧ 00)d⌧ 00d⌧ 0. (5.7)

The scaling exponent z is determined by the stable traveling wave solution and, hence, it is

universal (independent of initial conditions). The same refers to the function U(t), which is

universal up to the scaling symmetry. Numerical simulations in the case (4.4) yield z ⇡ 0.6975.
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invariants, the energy E =
P

|u
n

|2 and the helicity H =
P

(�1)nk
n

|u
n

|2 (the summation over

all n is assumed).

Solutions of viscous shell models exist and unique globally in time [9]. For the inviscid

models, i.e., with ⌫ = 0 in Eq. (4.1), the criterion of existence and uniqueness of the solution

requires a finite (enstrophy) norm

kuk1 =
⇣X

k2
n

|u
n

|2
⌘1/2

. (4.3)

If kuk1 = 1, the solution can be defined in a weak sense, but its uniqueness is not known [10].

We will also consider an entirely di↵erent derivation of the Sabra model [34]. For the specific

value of the inter-shell ratio,

� =

q
2 +

p
5 ⇡ 2.058, (4.4)

the Sabra model can be derived rigorously from the one-dimensional viscous conservation law

(1.1). Here the nonlocal flux function is given by

f =

ZZ
K(y � x, z � x)u(y, t)u(z, t)dydz (4.5)

with the kernel

K(y, z) =
K
 

(y, z) +K
 

(z, y)

4⇡
, K

 

(y, z) =
2�

(�y � z)2
� �2

(�2y � z)2
+

�

(�y + z)2
, (4.6)

where � = (1 +
p
5)/2 is the golden ratio. Singular integrals in Eq. (4.5) must be taken

with the Hadamard regularization. Let u(x, t) be a solution of Eqs. (1.1), (4.5), (4.6), and

û(k, t) =
R
u(x, t)e�ikxdx its Fourier transform. Then, for every fixed 1  k0 < �, the functions

u
n

(t) = k1/3
n

û
�
k2/3
n

, t
�
, k

n

= k0�
n, (4.7)

yield a solution of the Sabra model (4.1), (4.2), see [34]. Therefore, Eq. (1.1) in the Fourier

representation splits into a family of independent Sabra models parametrized by k0.

Note that the nonlocal quadratic term (4.5) is natural for a model of turbulence, because it

reflects a nonlocal character of the pressure term in incompressible flows. In the next sections,

we study the Sabra model, taking into account that the conclusions are automatically valid for

its one-dimensional continuous representation (1.1).

5 Self-similar dynamics before blowup

Let us consider the inviscid Sabra model

du
n

dt
= N

n

[u], n = 1, 2, 3, . . . . (5.1)
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invariants, the energy E =
P

|u
n

|2 and the helicity H =
P
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|u
n

|2 (the summation over
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⇣X

k2
n

|u
n

|2
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we study the Sabra model, taking into account that the conclusions are automatically valid for
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Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n

(t) = �iei✓nkz�1
n

U(0). With no

loss of generality, we can drop the coe�cients assuming that

u
n

(t
b

) = �ikz�1
n

, (6.1)

which can be obtained by using a symmetry group of the Sabra model [33]. Eq. (6.1) describes

the asymptotic inviscid state for large shell numbers n. Using Eq. (4.7), one recovers the

function û(k, t
b

) = �ik�� for k > 0 and � = 2 � 3z/2 ⇡ 0.954, which is a Fourier transposed

solution of the continuous representation for the Sabra model. As a Fourier transform of a

real function, it extends to negative k < 0 as û(k) = û⇤(�k) = i|k|��. The inverse Fourier

transform yields [3]

u(x, t
b

) =
�(1� �)

⇡
cos

✓
�⇡

2

◆
|x|��1sgn x. (6.2)

This function is shown in Fig. 3(c) and it represents a discontinuity of the solution in physical

space, which is created at the blowup time. As � is close to 1, function (6.2) is close to a

discontinuity (shock), but has infinite limits at x = 0. One can also find numerically the

physical space representation u(x, t) of the asymptotic relation (5.6), which describes a self-

similar formation of a singularity (6.2) in a classical solution [34].

7 Spontaneously stochastic dynamics after blowup

In order to study the behavior after blowup, we introduce the new variables

t = t
b

+ �⌧, u
n

= �ik�1
n

��⌧w
n

= �ik�1
0 ��⌧�nw

n

. (7.1)

Together with the shell scale ` / k�1
n

= k�1
0 ��n, expressions (7.1) follow the analogous definition

(2.9) for the Burgers equation. For new variables, the inviscid Sabra model (5.1), (4.2) takes

the form
dw

n

d⌧
=

✓
w

n

� 1

�2
w

n+2w
⇤
n+1 +

1

2
w

n+1w
⇤
n�1 +

�2

2
w

n�1wn�2

◆
log �. (7.2)
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Figure 3: (a) Renormalized variables v
n

(⌧) forming a traveling wave for large ⌧ ; the shell

number n = 1, 2, . . . increases from the left to the right. The initial conditions are v1 = v2 = 1

(with zeros for other variables) at ⌧ = 0. (b) Corresponding dynamics of the original variables

u
n

(t) developing into a self-similar blowup. (c) Physical space representation u(x, t) of the

solution u
n

(t) at blowup time.

The function A(⌧) given by Eqs. (5.3) and (5.5) is periodic with the period ⌧ = 1/a. Hence,

using the first expression in Eq. (5.7), we find that the integral
Z

⌧

0

A(⌧ 0)d⌧ 0 = za⌧ log �+ h(⌧), (5.8)

where h(⌧) is a periodic function. It follows from Eq. (5.8) that the integral in the last expression

of Eq. (5.7) converges providing a finite blowup time, 0 < t
b

< 1. Thus, a traveling wave

solution (5.5) leads to the universal self-similar asymptotic behavior at times preceding the

blowup as described by Eq. (5.6), see Fig. 3(b).

Using Eq. (5.8) and k
n

= k0�
n, we write the asymptotic scaling of variables (5.2) as

u
n

/ �za⌧�nv
n

, t� t
b

/ ���za⌧ . (5.9)

Additionally, the physical scale of shell n is expressed as

` / k�1
n

/ ��n. (5.10)

The comparison of Eqs. (5.9), (5.10) with Eq. (2.4) shows that our description of the blowup in

the Sabra model is analogous to the one for the Burgers equation in Section 2. Here n stands

for the logarithmic space variable ⇠. The blowup is associated with a wave traveling to large n

with a constant speed in the logarithmic time ⌧ .
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the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

Periodic wave in the Gledzer (real Sabra) shell model 
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of the scaling parameter c and signs σn. Hence, we can expect that similar univer-
sality holds after the blowup as well. Thus, we conjecture (and confirm later nu-
merically) that the functions in Eq. (7.2) have a universal asymptotic form for large
n. This asymptotic form should not be affected by the symmetry transformation
(7.3), which leaves the asymptotic state (6.3) unchanged. Since this transformation
changes the shell number by one in the functions (7.6), their universal asymptotic
form, Wn(η1, η2) → W (η1, η2), must be the independent of the shell number n. Using
Eq. (7.2), this yields the asymptotic expression of the form

wn(τ̃ ,χ) → W

(

n−
τ̃

τ0
,χ− χc −

τ̃

τ1

)

.(7.7)

Similarly to Eqs. (6.5) and (6.7), we understand the limit (7.7) pointwise for large
n → ∞ with fixed η1 = n− τ̃/τ0 and η2 = χ− χc − τ̃/τ1.

Recall that the values of χ, which differ by an integer number, correspond to
the same inviscid solution, see Section 5. Hence, the universal function W (η1, η2) is
periodic with respect to the second variable as

W (η1, η2) = W (η1, η2 + 1).(7.8)

The power law (6.3), where tb corresponds to τ̃ → ∞, and the relations (7.1), (7.7),
(7.8) yield the left-side limiting value of the function W (η1, η2) with respect to the
first argument as

lim
η1→−∞

W (η1, η2) = 1.(7.9)

The limit on the other side follows from the period-3 condition (5.2), which implies

that wn ∼ ky−1/3
n → 0 for large n with y − 1/3 < 0. This yields

lim
η1→∞

W (η1, η2) = 0.(7.10)

Note that the convergence in Eq. (7.10) is rather slow due to the small absolute value
of the exponent y − 1/3 ≈ −0.0524.

The conjectured universal asymptotic form (7.7) fully agrees with the numerical
simulations. In Fig. 9a,b we show the results of high-precision simulations carried out
for Eq. (2.2) with the boundary conditions u−1 = u0 = 0.7, zero initial conditions and
very small viscosities ν = 2−4(χ+10) ∼ 10−13 with χ = 0, 0.01, . . . , 0.99 (the viscous
range starts at nK ≈ 30). Shown are the functions Wn(η1, η2) for n = 14 and 18,
which are determined by the corresponding shell speeds using Eqs. (7.1) and (7.2).
These functions appear to be almost identical, confirming the asymptotic relation
(7.7). Figure 9c shows the function W22(η1, η2) of the analogous simulation, but for
the boundary and initial conditions un = k−y

n , n = −1, 0, 1, . . .. These conditions
correspond to the power law (6.3) at the blowup point satisfied exactly. Since the
function W22 is the same as the functions W14 and W18 in Fig. 9a,b, we confirmed the
universality of the asymptotic form (7.7), i.e., its independence of the boundary and
initial conditions. Note that relations (7.8)–(7.10) are clearly satisfied in Fig. 9a-c
with very slow convergence in the last condition, as it was expected.

The asymptotic form (7.7) contains different periods τ0 ≈ 0.719 and τ1 ≈ 2.245
in two different arguments of the function W . This means that, in renormalized
variables (7.1), the dynamics after the blowup is quasi-periodic (together with the
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Fig. 8. a) Magnified version of Fig. 1 near the blowup time tb ≈ 2.35 represented by the vertical
red line. b) Before the blowup, t < tb, the self-similar inviscid dynamics (6.1) corresponds to the
asymptotic traveling wave (6.5) in renormalized variables vn(τ) given by Eq. (6.4). Shown are the
variables vn, n = −1, 0, . . . , 30, at logarithmic times τ = 0, 3τ0, . . . , 21τ0 for the inviscid solution
with zero initial conditions and boundary values u−1 = u0 = 0.7. The symmetry parameters in
Eq. (6.4) are c = 0.7 and σn = +1.

Then, following [10, 26], expression (6.1) can be written in the form

vn(τ) → V

(

n−
τ

τ0

)

,(6.5)

where the function V (η), η ∈ R, and constant τ0 are defined as

V (η) = U (−2τ0η) , τ0 = 1− y ≈ 0.719.(6.6)

According to Eqs. (6.2) and (6.6), the convergence in Eq. (6.5) is understood in the
limit

τ = τ0n+ const → ∞, n → ∞,(6.7)

i.e., pointwise for a constant η = n− τ/τ0.
The function V (η) has the limits

lim
η→−∞

V (η) = 1, lim
η→∞

V (η) = 0,(6.8)

where the first condition follows from the property U(0) = 1. In the second condition,
large η corresponds to the region of large shell numbers, where un decays faster than
k−1
n due to the finite enstrophy condition and, hence, vn → 0 in Eq. (6.4).

Note that the limit τ → ∞ for the logarithmic time τ = − log2[c(tb − t)] corre-
sponds to t → t−b . Hence, expression (6.5) describes the blowup as a traveling wave
with the universal stationary profile V (η) moving from smaller to larger shell numbers
with constant speed τ−1

0 in logarithmic time τ , see Fig. 8b. This implies periodicity
of the rescaled shell speeds vn(τ) in Eq. (6.5), which attain the same values with the
shift by one shell number after each period τ0.

7. Onset of spontaneous stochasticity after the blowup. After the blowup,
t > tb, the inviscid solution is not unique, as we observed in numerical simulations,
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Fig. 6. Evolution of the shells (u3, u4) for the solution in vanishing viscosity limit for zero
initial conditions and boundary values u−1 = u0 = 0.7. The curves show solutions for very small
viscosities ν = 2−4(χ+6) with χ = 0, 0.04, . . . , 1. The inviscid solutions coincide for all 0 ≤ χ < 1
before the blowup, t ≤ tb, and define a surface for larger times, t > tb. The right figure shows the
amplified region near the blowup time tb ≈ 2.35, when the spontaneous stochasticity occurs.

At each time, the solution u[ν]
n (t), n = 1, 2, . . ., represents a random variable (prob-

ability measure) in the ℓ2 space with the norm given by the square root of energy,
and the limit can be understood in a weak sense. Note that no choice of a special
viscosity subsequence is necessary in the limit (5.3), where all limiting solutions (5.1)
are involved through the random variable X . As a result, the inviscid solution Un(t)
is given by a singular probability measure supported on the one-parameter set of
solutions (5.1).

Figure 6 shows the solution (5.3) computed numerically. One can see that the
limiting solution is deterministic until a certain time t ≤ tb (with the blowup time
tb as described in the next section), and becomes stochastic for t > tb. This reveals
the striking property of the spontaneous stochasticity of the inviscid solution Un(t)
obtained in the limit of vanishing viscosity.

Figure 7 (thin solid line) shows the one-dimensional support of the singular prob-
ability measure of solutions (5.3) for the shell speeds u3 and u4 computed numerically
at t = 3. This support represents a closed curve. It is remarkable that the probability
measure depends on the viscosity mechanism. Indeed, let us consider Eq. (2.2) with
the hyperviscous term −νkβnun, where the usual viscosity corresponds to β = 2. The
general case with β ̸= 2 can be studied in a similar way, where one should use a differ-
ent scaling of viscosity depending on β. The inviscid solution in the vanishing viscosity
limit can be defined as a probability measure, similarly to Eq. (5.3). This measure
was computed numerically for β = 1.5 and 2.5, see Fig. 7 (thick solid and dashed
lines). The simulations confirm that the measure is singular with a one-dimensional
support, which is different for different β, i.e., the inviscid limit depends strongly on
the viscosity mechanism.

6. Blowup. Let us consider the Cauchy problem for the system (2.2) with arbi-
trary boundary conditions (2.3) and initial conditions at t = 0 with finite enstrophy
Ω(0) =

∑

k2nu
2
n < ∞. In the viscous case, ν > 0, there exists a unique solution [2, 7, 8].

For the inviscid system, ν = 0, the solution exists in a weak sense and it is unique as
soon as the enstrophy is finite. The enstrophy may explode (blowup) in finite time
tb > 0 such that Ω → ∞ as t → t−b . Before the blowup, 0 ≤ t < tb, the viscous
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Fig. 9. a,b) Functions W14 and W18 describing behavior after the blowup in new shell coordi-
nates and logarithmic time (7.2). The functions are computed numerically using Eq. (2.2) with 35
shells for viscosities ν = 2−4(χ+10), χ = 0, 0.01, . . . , 0.99. The boundary and initial conditions are as
in Fig. 1. c) Similar computations for the function W22 but for the boundary and initial conditions

un = k−y
n . The functions in figures a-c are almost identical, confirming existence of the universal

asymptotic form (7.7). Note that these figures correspond to the same interval 3τ0 ≤ τ̃ ≤ 30τ0,
which yields different intervals of η1 = n− τ̃/τ0 for different n in Eq. (7.2). d) Renormalized shell
variables wn(τ̃ ,χ) computed under conditions of figures a,b for χ = 0 and different τ̃ , demonstrating
quasi-periodic dynamics.

shift by one shell number after each τ0), unlike the periodic dynamics before the
blowup in Eq. (6.5), see Figs. 8 and 9. Figure 9d shows this quasi-periodic dynamics
with the logarithmic time intervals of 5τ0. Here the viscous range starts at nK = 30,
so that the formula (7.7) for the inviscid dynamics is appropriate for the shells n ! 25.
As τ̃ decreases from infinity (the original time t increases in the region t > tb), the
lower shell numbers get involved in the dynamics, while the higher shell numbers
develop the period-3 tail as described in Section 5.

We conclude that the self-similar wave (6.5) propagating to large shell numbers
(from large to small scales) before the blowup is followed by the wave (7.7) moving
in the opposite direction (from small to large scales) after the blowup. The latter
wave is given by a periodic function (7.8), which is universal (independent of initial
and boundary conditions) and contains the information about all inviscid solutions
obtained in the limit of vanishing viscosity. This completes the description for the
onset of spontaneous stochasticity, which occurs after the blowup, see Fig. 6b.

8. Conclusion. In this work, we provided the detailed numerical and theoretical
description of the spontaneous stochasticity phenomenon in the Gledzer shell model of
turbulence, which is a real version of the GOY and Sabra models. This deterministic
model describes the energy transport from large to small scales, which is qualitatively
similar to the one observed in the developed turbulence for the 3D Navier-Stokes
equations. Essential reduction of the number of degrees of freedom for the shell
model allows high-accuracy multiscale numerical analysis. We demonstrated that the
limit of vanishing viscosity, chosen in a specific form with a single real parameter, is
not unique and leads to an infinite number of different inviscid solutions. Existence of
stable stationary solutions in the model allows understanding the inviscid limit both
for stationary and time-dependent solutions, where infinitesimal viscosity strongly
affects the system at all scales. We showed that the inviscid solution, which is unique
until the finite-time blowup, becomes nonunique after the blowup. Emergence of

Non-unique solutions! 
However, a unique solution can be chosen for a given (small) viscosity    (AM 2016)

⌫ = 2�4(�+N) ����!
N!1

0



Figure 2: Schematic picture of the formation of a traveling-wave probability measure µ⌧(w) for

renormalized chaotic solutions w(⇠, ⌧) from a blowup state at ⌧ = �1.

that w = G(⇠ + a⌧, ⌧), where G(⌘, ⌧) is characterized for large ⌧ by a chaotic attractor. The

blowup imposes a specific initial condition for the inviscid solution w at ⌧ ! �1. But, due to

exponential divergence of trajectories with close initial conditions (the famous butterfly e↵ect),

we cannot choose any particular solution at finite ⌧, see Fig. 2. Namely, even if a particular

inviscid solution is chosen by some viscous regularization procedure, with a discrete subsequence

of viscosities ⌫
n

! 0+ [28], an arbitrarily small perturbation will provide a totally di↵erent

solution. Thus, no physically relevant deterministic solution can be expected in a vanishing

viscosity limit. The limiting object is a chaotic attractor with an invariant probability measure

for di↵erent observable solutions w, Fig. 2.

We are led to the surprising conclusion: the inviscid solution becomes stochastic at every

time after the blowup despite the governing equation (1.1) looks fully deterministic! This is

not just the non-uniqueness phenomenon for weak solutions. On the contrary, one can expect

a unique solution as a probability distribution, because this distribution is associated with the

invariant measure of a chaotic attractor.

Our argument above suggests, and we will provide a detailed numerical evidence, that a

physically relevant inviscid solution at times after the blowup should be defined as a measure

dµ⌧(w), which describes a probability distribution of solutions w(⇠, ⌧) at fixed ⌧ = log(t� t
b

).

The measure dµ⌧(w) has the form of a traveling wave moving with a constant speed a in

logarithmic coordinates (⇠, ⌧). This traveling wave connects a deterministic blowup state on

one side (deterministic “past” of the solution) and a stochastic state on the other side. A steady

motion of such a wave in the direction of smaller ⇠ describes the propagation of stochasticity

from arbitrarily small to finite scales x = e�⇠, Fig. 2.

An important theoretical implication is the revision of a viscous regularization procedure.

A small viscosity present in a physical system suppresses the dynamics at su�ciently large ⇠
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Implications: 

• physically relevant solution is a (spontaneous!) probability distribution
• unique probabilistic description in inviscid limit 

in the form of a steady-state traveling stochastic wave

Chaotic wave in renormalized system: spontaneous stochasticity

the time ⌧ is merely measures the “local” characteristic time of the disturbance in its way

from large to infinitely small scales at the blowup. Analogously, after the blowup, the time ⌧

is measured by the internal “clock” of the shock wave in its development from a point at the

blowup to a finite size.

3 Dynamical system description of blowup

The transformation proposed in the previous section does not bring much new understanding

for the Burgers equation, since the analytic solution is available, but it helps understanding

the origin of the spontaneous stochasticity phenomenon studied below in this paper. A trav-

eling wave solution is the simplest form of the large-time behavior for a translation-invariant

autonomous dynamical system such as Eq. (2.8) or (2.10). One can ask a question, what will

happen if this solution gets unstable giving rise to a periodic or even chaotic attractor? For

solutions before the blowup this is indeed possible if the nonlinear term f in Eq. (1.1) is non-

local, as in continuous representations of shell models [34]. This problem was studied in [32]

demonstrating di↵erent blowup scenarios corresponding to periodic, quasi-periodic and chaotic

waves. These waves define an asymptotic form of a classical inviscid solution as it approaches

the blowup, since large ⌧ = � log(t
b

� t) correspond to t ! t�
b

.

A very di↵erent situation is expected for a solution (2.11), which describes the unfolding of

a blowup. This solution starts at ⌧ = log(t� t
b

) = �1 corresponding to t = t
b

. Therefore, an

infinite interval (in terms of ⌧) preceeds any finite time after the blowup. An example of the

equation, where the attractor is a periodic wave was given in [36]. This means that there is a

stable solution w = G(⇠+a⌧, ⌧) such that G(⌘, ⌧) = G(⌘, ⌧+⌧1) for some period ⌧1 > 0 and any

⌘ and ⌧. This solution represents a periodically pulsating wave traveling with an average speed

a from large to small values of ⇠. In fact, there is a family of solutions w = G(⇠ + a⌧ + ⇠0, ⌧)

defined up to a constant shift ⇠0, because the governing equation is translation invariant, see

Eq. (2.10), for example. It was shown that a specific value of ⇠0 is chosen if one defines a

solution in the inviscid limit ⌫
n

! 0+ for a specific sequence of viscosities. Any value of ⇠0

can be obtained in this way, leading to the non-uniqueness (an infinite number) of physically

relevant inviscid solutions.

In this paper we show that the Sabra shell model of turbulence [30], which is equivalent

to system (1.1) with a nonlocal quadratic flux function given below by Eqs. (4.5) and (4.6),

provides an example in which the blowup unfolding is given by a chaotic wave. This means
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

Dynamics in renormalized time:



Renormalized system:

Note that the shapes of the two traveling waves in Figs. 1(b) and 3(a) look di↵erent, because

the Burgers description was based on physical space representation, while the Sabra model

corresponds to the Fourier-transformed equations. Considering the Burgers equation in Fourier

space yields the description, which looks rather similar to the Sabra model [31].

6 The blowup state

Exactly at the blowup time, t = t
b

, expression (5.6) yields u
n

(t) = �iei✓nkz�1
n

U(0). With no

loss of generality, we can drop the coe�cients assuming that

u
n

(t
b

) = �ikz�1
n

, (6.1)

which can be obtained by using a symmetry group of the Sabra model [33]. Eq. (6.1) describes

the asymptotic inviscid state for large shell numbers n. Using Eq. (4.7), one recovers the

function û(k, t
b

) = �ik�� for k > 0 and � = 2 � 3z/2 ⇡ 0.954, which is a Fourier transposed

solution of the continuous representation for the Sabra model. As a Fourier transform of a

real function, it extends to negative k < 0 as û(k) = û⇤(�k) = i|k|��. The inverse Fourier

transform yields [3]
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This function is shown in Fig. 3(c) and it represents a discontinuity of the solution in physical

space, which is created at the blowup time. As � is close to 1, function (6.2) is close to a

discontinuity (shock), but has infinite limits at x = 0. One can also find numerically the

physical space representation u(x, t) of the asymptotic relation (5.6), which describes a self-

similar formation of a singularity (6.2) in a classical solution [34].
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Figure 4: (a) Chaotic dynamics of variables w
n

shown at di↵erent times ⌧ = log
�

t, where

⌧ = �1 corresponds to blowup state (6.1). (b) Standard deviation of Rew
n

at a⌧ =

�27,�26, . . . ,�7 (increasing time is indicated by an arrow). The graphs form a traveling

wave moving in the direction of smaller n with the constant speed a.

This equation is autonomous and translation-invariant, thus, it allows traveling-wave type of

solutions. Condition (6.1) at t = t
b

must be satisfied in the limit ⌧ ! �1. For this limit, the

second relation in Eq. (7.1) with k
n

= k0�
n defines

w
n

= ik
n

�⌧u
n

! kz

n

�⌧ = kz

0�
z(n+a⌧), a = 1/z, ⌧ ! �1. (7.3)

This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are
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This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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Figure 4: (a) Chaotic dynamics of variables w
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shown at di↵erent times ⌧ = log
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t, where

⌧ = �1 corresponds to blowup state (6.1). The data is obtained from a single integra-

tion of the Sabra model with viscosity ⌫ = 10�15. (b) Standard deviation of Rew
n

at

↵⌧ = �27,�26, . . . ,�7 (increasing time is indicated by an arrow). The graphs form a traveling

wave moving in the direction of smaller n with the constant speed ↵.
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This equation is autonomous and translation-invariant, thus, it allows traveling-wave type of

solutions. Condition (6.1) at t = t
b

must be satisfied in the limit ⌧ ! �1. For this limit, the

second relation in Eq. (7.1) with k
n

= k0�
n defines

w
n

= ik
n

�⌧u
n

! kz

n

�⌧ = kz

0�
z(n+↵⌧), ↵ = 1/z, ⌧ ! �1. (7.3)

This expression determines the speed ↵ = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) (with viscous reg-

ularization) is chaotic, which is a well-known fact for the Sabra model, Fig. 4(a). In this case,

our argument in Section 3 suggests that the inviscid solution should be understood in the prob-

abilistic sense, i.e., as a measure dµ⌧(w) describing a probability distribution for the infinite

sequence w = (w1, w2, . . .) at given ⌧. This measure should be obtained in the inviscid limit,

which includes a small-scale random perturbation. In order to verify this hypothesis, we found

the statistical distribution numerically. We took the asymptotic blowup state (6.1) as the initial

condition at t = t
b

= 0. A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is
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Figure 5: PDFs of log |w
n

| for (a) n = 10, (b) n = 15, (c) n = 20 as functions of ⌧ = log
�

t.

Darker color means larger probability. These functions represent a traveling wave in (n, ⌧)

coordinates, with a deterministic blowup state for ⌧ ! �1.

n ⇠ 35. Thus, we can observe the inviscid dynamics in the inertial interval of shells n . 30.

Fig. 4(b) shows the standard deviation of Rew
n

with increasing ⌧. The figure demonstrates

the formation of a stable traveling wave moving with the constant speed a in the direction of

small n, i.e., from large to small scales. Note a similarity of Fig. 4(b) with the analogous graph

for the deterministic w(⇠, ⌧) of the Burgers equation in Fig. 1(c). For the probability measure

µ⌧(w), the traveling wave condition implies

µ⌧+⌧0(w) = µ⌧(Tw), (7.4)

where ⌧0 = 1/a = z is the time period, in which the wave travels for a distance of one shell

number, and T : (w1, w2, . . .) 7! (w2, w3, . . .) is the corresponding translation operator. Fig. 5

shows probability density functions (PDFs) of log |w
n

| for the shells n = 10, 15, 20 at di↵erent

times ⌧, which are in full agreement with the traveling wave condition (7.4). For each shell, the

stochastic component grows with ⌧ in the same way but with a shift in ⌧. The stochasticity

of equal intensity is developed earlier at larger shell numbers (smaller scales) and later for

smaller shell numbers (larger scales). The limit ⌧ ! �1, corresponding to t ! t+
b

, describes a

deterministic “past” of the solution given by Eq. (7.3), and it is clearly seen as a straight sold

line in Fig. 5.

An interesting representation of the traveling probability measure can be obtained using

the shell speed multipliers, which include the factors and phases defined as [4, 17]

!
n

= |u
n

/u
n�1|, �

n

= arg(u
n�2un�1u

⇤
n

). (7.5)
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This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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Figure 4: (a) Chaotic dynamics of variables w
n

shown at di↵erent times ⌧ = log
�

t, where

⌧ = �1 corresponds to blowup state (6.1). (b) Standard deviation of Rew
n

at a⌧ =

�27,�26, . . . ,�7 (increasing time is indicated by an arrow). The graphs form a traveling

wave moving in the direction of smaller n with the constant speed a.

This equation is autonomous and translation-invariant, thus, it allows traveling-wave type of

solutions. Condition (6.1) at t = t
b

must be satisfied in the limit ⌧ ! �1. For this limit, the

second relation in Eq. (7.1) with k
n

= k0�
n defines

w
n

= ik
n

�⌧u
n

! kz

n

�⌧ = kz

0�
z(n+a⌧), a = 1/z, ⌧ ! �1. (7.3)

This expression determines the speed a = 1/z ⇡ 1.4337 of a traveling wave, with the direction

of motion from larger to smaller shell numbers n.

Numerical simulations suggest that the dynamics described by Eq. (7.2) is chaotic, which

is a well-known fact for the Sabra model, Fig. 4(a). In this case, our argument in Section 3

suggests that the inviscid solution should be understood in the probabilistic sense, i.e., as a

measure dµ⌧(w) describing a probability distribution for the infinite sequence w = (w1, w2, . . .)

at given ⌧. This measure should be obtained in the inviscid limit, which includes a small-scale

random perturbation. In order to verify this hypothesis, we found the statistical distribution

numerically. We took the asymptotic blowup state (6.1) as the initial condition at t = t
b

= 0.

A very small viscosity is set to ⌫ = 10�15. Also, a small perturbation is applied in the viscous

range, u36(0) = (�i + 0.01x)kz�1
36 , with a random real number x uniformly distributed in the

interval [�1, 1] (a specific form and magnitude of this perturbation does not a↵ect the results).

Eqs. (4.1) and (4.2), with � given by Eq. (4.4) and the total number of shells n = 45, are

integrated numerically with high accuracy. We performed 104 simulations for di↵erent values

of the random number x. These numerical simulations feature the viscous range for shells
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Figure 5: PDFs of log |w
n

| for (a) n = 10, (b) n = 15, (c) n = 20 as functions of ⌧ = log
�

t.

Darker color means larger probability. These functions represent a traveling wave in (n, ⌧)

coordinates, with a deterministic blowup state for ⌧ ! �1.

n ⇠ 35. Thus, we can observe the inviscid dynamics in the inertial interval of shells n . 30.

Fig. 4(b) shows the standard deviation of Rew
n

with increasing ⌧. The figure demonstrates

the formation of a stable traveling wave moving with the constant speed a in the direction of

small n, i.e., from large to small scales. Note a similarity of Fig. 4(b) with the analogous graph

for the deterministic w(⇠, ⌧) of the Burgers equation in Fig. 1(c). For the probability measure

µ⌧(w), the traveling wave condition implies

µ⌧+⌧0(w) = µ⌧(Tw), (7.4)

where ⌧0 = 1/a = z is the time period, in which the wave travels for a distance of one shell

number, and T : (w1, w2, . . .) 7! (w2, w3, . . .) is the corresponding translation operator. Fig. 5

shows probability density functions (PDFs) of log |w
n

| for the shells n = 10, 15, 20 at di↵erent

times ⌧, which are in full agreement with the traveling wave condition (7.4). For each shell, the

stochastic component grows with ⌧ in the same way but with a shift in ⌧. The stochasticity

of equal intensity is developed earlier at larger shell numbers (smaller scales) and later for

smaller shell numbers (larger scales). The limit ⌧ ! �1, corresponding to t ! t+
b

, describes a

deterministic “past” of the solution given by Eq. (7.3), and it is clearly seen as a straight sold

line in Fig. 5.

An interesting representation of the traveling probability measure can be obtained using

the shell speed multipliers, which include the factors and phases defined as [4, 17]

!
n

= |u
n

/u
n�1|, �

n

= arg(u
n�2un�1u

⇤
n

). (7.5)

14Wave speed:

Probability distribution as a steady-state traveling wave



Kolmogorov hypothesis on universality of velocity increments
(Kolmogorov 62; Benzi, Biferale & Parisi 93; Eyink 2003):

Figure 5: PDFs of log |w
n

| for (a) n = 10, (b) n = 15, (c) n = 20 as functions of ⌧ = log
�

t.

Darker color means larger probability. These functions represent a traveling wave in (n, ⌧)

coordinates, with a deterministic blowup state for ⌧ ! �1.

n ⇠ 35. Thus, we can observe the inviscid dynamics in the inertial interval of shells n . 30.

Fig. 4(b) shows the standard deviation of Rew
n

with increasing ⌧. The figure demonstrates

the formation of a stable traveling wave moving with the constant speed a in the direction of

small n, i.e., from large to small scales. Note a similarity of Fig. 4(b) with the analogous graph

for the deterministic w(⇠, ⌧) of the Burgers equation in Fig. 1(c). For the probability measure

µ⌧(w), the traveling wave condition implies

µ⌧+⌧0(w) = µ⌧(Tw), (7.4)

where ⌧0 = 1/a = z is the time period, in which the wave travels for a distance of one shell

number, and T : (w1, w2, . . .) 7! (w2, w3, . . .) is the corresponding translation operator. Fig. 5

shows probability density functions (PDFs) of log |w
n

| for the shells n = 10, 15, 20 at di↵erent

times ⌧, which are in full agreement with the traveling wave condition (7.4). For each shell, the

stochastic component grows with ⌧ in the same way but with a shift in ⌧. The stochasticity

of equal intensity is developed earlier at larger shell numbers (smaller scales) and later for

smaller shell numbers (larger scales). The limit ⌧ ! �1, corresponding to t ! t+
b

, describes a

deterministic “past” of the solution given by Eq. (7.3), and it is clearly seen as a straight sold

line in Fig. 5.

An interesting representation of the traveling probability measure can be obtained using

the shell speed multipliers, which include the factors and phases defined as [4, 17]

!
n

= |u
n

/u
n�1|, �

n

= arg(u
n�2un�1u

⇤
n

). (7.5)
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Figure 6: PDFs of the multiplier !
n

(left column) and the phase �
n

(right column) for the

shells n = 10, 15, 20 as functions of ⌧ = log
�

t. Darker color means larger probability. These

functions represent a traveling wave with a constant deterministic state for small ⌧ and a

constant stochastic state for large ⌧.

According to the Kolmogorov hypothesis [25, 8], these variables have universal statistics for

the stationary developed turbulence. Condition (7.4) implies that the PDFs of the random

variables (!
n

,�
n

) have the form of a traveling wave. These PDFs are shown in Fig. 6. They

not only confirm the traveling wave form of the solution, but also demonstrate a stationary

stochastic state on the right side, ⌧ ! 1. This state corresponds to the stationary developed

turbulence, according to the Kolmogorov hypothesis, which we confirm in Fig. 7.

Finally, we performed additional tests, where we followed the solution from large-scale initial

conditions, both before and after the blowup. In order to see the stochastic inviscid limit, we

assumed a small perturbation of the viscosity ⌫ = 10�15(1 + 0.01x). The obtained results lead

to the probability distribution in the form of a traveling wave with no noticeable di↵erence
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Figure 7: PDFs of (a) the multiplier !
n

and (b) the phase �
n

. Thin black lines are obtained

from the simulations for the shells n = 15, . . . , 25 at final time in Fig. 6. All the curves collapse

onto the PDF corresponding to the stationary turbulent regime (bold red curves) [17].

(within the numerical accuracy) in comparison with Figs. 5 and 6, confirming the asymptotic

universality of the stochastic solution.

8 Conclusions

In this work, we studied solutions for one-dimensional models of hydrodynamic type, u
t

+ f
x

=

⌫u
xx

, where the flux function f is nonlocal. Our main focus is the behavior of solutions in

inviscid limit near the blowup time t
b

. We showed that an asymptotic evolution before the

blowup can be mapped into an autonomous dynamical system with the logarithmic temporal

variable ⌧ = � log(t
b

� t). Similarly, a dynamical system can be introduced after the blowup

with the logarithmic time ⌧ = log(t� t
b

). For the Burgers equation, with f = u2/2, these two

dynamical systems have stable traveling wave solutions describing a universal form of shock

formation. However, chaotic waves may appear for models with a nonlocal flux function f , as we

demonstrated for the Sabra shell model of turbulence and its one-dimensional representation.

This chaotic behavior triggers a spontaneous probabilistic description for the system solutions.

A crucial element of our analysis is the existence of a probability measure in the form of a

traveling wave, which moves from small to large scales with constant profile and speed in the

logarithmic space-time. This wave has the blowup state on one side, describing a deterministic

past at ⌧ = �1, and the developed turbulent state on the other side, describing a stochastic

future at finite ⌧. The semi-infinite interval (�1, ⌧] of the chaotic dynamics collapses into a
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Summary

Spontaneously stochastic solutions

in one-dimensional inviscid systems

Alexei A. Mailybaev⇤

Abstract

In this paper, we study the inviscid limit of the Sabra shell model of turbulence, which

is considered as a particular case of a viscous conservation law in one space dimension with

a nonlocal quadratic flux function. We present a theoretical argument (with a detailed

numerical confirmation) showing that a classical deterministic solution before a finite-

time blowup, t < t
b

, must be continued as a stochastic process after the blowup, t > t
b

,

representing a unique physically relevant description in the inviscid limit. This theory is

based on the dynamical system formulation written for the logarithmic time ⌧ = log(t�t
b

),

which features a stable traveling wave solution for the inviscid Burgers equation, but a

stochastic traveling wave for the Sabra model. The latter describes a universal onset of

stochasticity immediately after the blowup.

1 Introduction

In this paper, we study the inviscid limit (⌫ ! 0+) for one-dimensional conservation laws of

the form
@u

@t
+

@f

@x
= ⌫

@2u

@x2
, x, t 2 R, (1.1)

where ⌫ � 0 is the viscosity and the flux function f is quadratic and nonlocal, i.e., f =
RR

K(y � x, z � x)u(y, t)u(z, t)dydz. Such equations can be used as hydrodynamic models of

turbulence, where the nonlocality of f mimics the nonlocality of the pressure term in inviscid

flows [20]. In fact, some of popular shell models of turbulence, which attracted a lot of interest

⇤
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Est. Dona Castorina 110, 22460-320 Rio de

Janeiro, RJ, Brazil. E-mail: alexei@impa.br.
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2 Internal “clock” of the blowup

In this section we describe how a finite-time blowup problem can be mapped into a problem

of large-time behavior for a dynamical system. For this purpose, let us consider the Burgers

equation (1.1), where the flux function f = u2/2. In the inviscid case (⌫ = 0), a well-known

classical (smooth) solution is given implicitly by

u = u0(x0), x = x0 + (t� t0)u, (2.1)

where u(x, t0) = u0(x) is an initial condition and x0 is an auxiliary variable. Let us consider a

solution, which blows up at finite time t = t
b

. One can use a symmetry group of the Burgers

equation, which includes shifts of origin, scale changes and the Galilean transformation, to

simplify the blowup description. In generic case, this reduces the initial condition to the form

u0(x) = �x + x3 + o(x3) with t0 = �1, see e.g. [38, 31]. Substituting this expression into

Eq. (2.1) and solving with respect to x yields

x = ut� u3 + o(u3). (2.2)

The corresponding solution u(x, t) blows up at t
b

= 0, when u(x, 0) ⇡ �x1/3 has an infinite

derivative at the origin, Fig. 1(a).

To simplify our further arguments, we ignore the o(u3) term in Eq. (2.2). Then, for x > 0,

we write this expression as

e�⇠ = ve�⇠ + v3e3⌧�3⇠, (2.3)

where the renormalized time ⌧ , space variable ⇠ and state v are introduced as

t = �e�⌧ , x = e�⇠, u = �ve⌧�⇠. (2.4)

Equation (2.3) yields

v = F (⇠ � a⌧), a = 3/2, (2.5)

where the function F (⌘) is defined implicitly by the equation

1 = F + e�2⌘F 3. (2.6)

We see that the blowup formation can be seen as a traveling wave (2.5) moving with the constant

speed a in the logarithmic space coordinate ⇠ and time ⌧ , Fig. 1(b). In this description, the

limit ⌧ ! 1 corresponds to the blowup time t = �e�⌧ ! 0�, and the limit ⇠ ! 1 yields the

3

due to their non-trivial behavior analogous to the developed hydrodynamic turbulence [6],

are strictly equivalent to Eq. (1.1), see [34]. In particular, this refers to the Sabra model of

turbulence [30] studied in this paper.

When f = u2/2, Eq. (1.1) represents the Burgers equation and its solution is well known.

Inviscid solutions blow up in finite time forming a shock wave. A discontinuous (weak) solu-

tion at larger times is well-defined in the inviscid limit, see e.g. [11]. When the flux function

is nonlocal, a finite-time blowup in the inviscid system can be described using renormaliza-

tion techniques [14, 31]. Our aim in this work is to demonstrate and explain the striking

phenomenon, when a deterministic (classical) inviscid solution before the blowup continues

spontaneously as a stochastic process for times after the blowup.

Understanding of the stochasticity phenomenon proposed in this work is based on a combina-

tion of the two concepts: non-uniqueness and chaos. It is known that Lagrangian trajectories

of a rough deterministic velocity field are non-unique [5, 13, 19, 26, 18]. The origin of this

stochasticity is a violation of the Lipschitz condition, which ensures the uniqueness of solu-

tions for di↵erential equations, see e.g. [2]. In our system, the roughness necessary for such

non-uniqueness is provided by the blowup phenomenon.

It is widely accepted [20] that the developed turbulence is not just a finite-dimensional

chaos phenomenon, due to a large (infinite as ⌫ ! 0+) separation of scales both in space

and time. These arguments are equally applied to the Sabra model of turbulence and the

corresponding Eq. (1.1). We show, however, that the dynamical system approach can be used

immediately after the blowup time t
b

, if formulated for the logarithmic time ⌧ = log(t� t
b

). A

crucial observation leading to the stochastic description is that the solution at every time t > t
b

undergoes an infinitely long chaotic evolution with respect to ⌧. We argue that this leads to

the unique physically relevant description of the inviscid flow as a probability distribution for

solutions u(x, t) at t > t
b

.

The paper is organized as follows. In Section 2 we show how the dynamics before and after

the blowup in the inviscid Burgers equation can be translated into traveling wave solutions

of respective renormalized systems. This representation is used in Section 3 to explain quali-

tatively the origin of the stochasticity phenomenon. Section 4 introduces the Sabra model of

turbulence and its continuous representation (1.1). Section 5 explains the universal self-similar

structure of a finite-time blowup. Section 6 describes the solution at blowup time. Section 7

demonstrates the universal emergence of a stochastic process from a deterministic blowup state.

We end with the Conclusions.

2

Inviscid Burgers equation 
(compressible gas dynamics)

A notion of weak solution, entropy condition, 
extended functional spaces, etc.

Nonlocal flux term 
(“incompressible” flow?)

Nonlinearity 28 (2015) 2497 A A Mailybaev

2. One-dimensional hydrodynamic models

We consider one-dimensional models for a scalar variable u(x, t) in the form

∂u

∂t
+

∂g

∂x
= ν

∂2u

∂x2
+ f, x, t ∈ R, (2.1)

where ν is a viscous coefficient, f (x, t) is the forcing term and

g(x, t) = 1
2π

∫ ∫
K(y − x, z − x)u(y, t)u(z, t)dydz (2.2)

is the nonlocal quadratic flux term. For hydrodynamic models, where the quadratic term
originates from the convective acceleration (and pressure for inviscid flows), it is natural to
assume that K(y, z) is a real homogeneous function of degree −2. Therefore, it can be
considered in the form

K(y, z) =
∫ ∫

ϕ

(
p

p + q

)
e−i(py+qz)dpdq, (2.3)

with a real function ϕ(ξ). For example, the product of Dirac delta functions K(y, z) =
πδ(y)δ(z) corresponds to ϕ ≡ (4π)−1 and generates the Burgers equation with g = u2/2 in
equation (2.1).

We do not specify the functional spaces for solutions u(x, t) and for the kernel K(y, z),
assuming that they allow the integral (Fourier) transformations used below. We will comment
on this issue when considering a specific form of K(y, z) in the next section. It is clear that the
function K(y, z) in equation (2.2) can always be chosen symmetric, i.e. K(y, z) = K(z, y).
One can check that permuting the variables y ↔ z in the expression (2.3) is equivalent to
permuting p ↔ q and substituting ϕ(ξ) by ϕ(1 − ξ). Thus, the symmetry of K(y, z) is
equivalent to the condition

ϕ(ξ) = ϕ(1 − ξ), (2.4)

which will be assumed from now on.
For the Fourier transformed function u(k) =

∫
u(x)e−ikxdx, equations (2.1)–(2.3)

reduce to
∂u(k)

∂t
= −ik

∫
ϕ

(p

k

)
u(p)u(k − p)dp − ν|k|2αu(k) + f (k), (2.5)

where we omitted the argument t for simplicity of notations. We also introduced the parameter
α, such that α = 1 corresponds to equation (2.1) and α > 1 determines the model with
hyperviscosity. The mean value

∫
u(x)dx is conserved by equation (2.1) provided that∫

f (x)dx = 0 and g → 0, ∂u/∂x → 0 as |x| → ∞. We will assume the vanishing mean
values, leading to f (k) = u(k) = 0 for k = 0. Recall the reality condition u(−k) = u∗(k) for
the Fourier transformed real function, where the asterisk denotes the complex conjugation.

2.1. Energy conservation

We define the energy as

E = 1
2

∫
u2(x)dx = 1

4π

∫
|u(k)|2dk. (2.6)

Let us show that the energy conservation condition in the inviscid model with zero force
(ν = f = 0) is given by the equality

ϕ (ξ) − ξϕ

(
1
ξ

)
+ (ξ − 1)ϕ

(
1

1 − ξ

)
= 0 (2.7)
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Stochastic solutions, renormalization, 
viscous regularization with infinitesimal noise, etc.

Spontaneously stochastic process as a unique solution of deterministic flow equations

singularity + chaos



Lagrangian vs. Eulerian stochasticity

Spontaneously stochastic solutions:  
general discussion

Non-unique deterministic vs. unique stochastic solutions

How to understand/define the inviscid (large Re) limit?

Regularization must contain an infinitesimal random term, e.g.,
a small-scale noise or random components in physical parameters. 

The limiting (large Reynolds number) stochastic solution may be expected 
to be unique and independent of regularization. 

Observation is a random (non-unique) 
realization of a unique probability measure.

Thus, spontaneous stochasticity is a property 
of inviscid deterministic flow equations.
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